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Roadmap

• We talked about what regression is, but now how to solve these
problems

• Gradient Descent for OLS

• Least Angle Regression for LASSO
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Gradient Descent for OLS

Plan

Gradient Descent for OLS

Least Angle Regression
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Gradient Descent for OLS

Closed Form Estimator

• Possible for ridge regression(
XTX + λI

)−1
XTy (1)

• But inverting a matrix is hard! Doesn’t always scale.

• What if your data don’t live in memory?

• Stochastic gradient descent
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Gradient Descent for OLS

Objective

• Observations should be close to ~βx>

Error(β) =
1

N

N∑
i=1

(
yi − ~βx>

)2
(2)

• Equivalent to observations from Gaussian
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Gradient Descent for OLS

OLS Gradient for 2D

For convenience, write predictions as mx + b

Possible tweaks: stochastic gradient descent, adding regularization
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Gradient Descent for OLS

Toy Data
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Gradient Descent for OLS

Toy Data
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Gradient Descent for OLS

Running Gradient Descent

(learning rate is 0.0005)
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Least Angle Regression

Plan

Gradient Descent for OLS

Least Angle Regression
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Least Angle Regression

Can we use Gradient Descent for Lasso?

• Objective isn’t differentiable

• Combinatorial optimization

• Similar to SMO algorithm for SVMs
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Least Angle Regression

LAR Algorithm

1. Start with r = y , β1, . . . βp = 0. Assume xj are all mean zero and
unit variance.

2. Until all predictors have been used and 〈r , xj〉 = 0∀j :
2.1 Find predictor xj most correlated with residual r
2.2 Increase βj in the direction of sign 〈r , xj〉 until some xk has as much

correlation with r as xj or the sign of βj changes. Call this distance u
2.3 Update prediction µ, residual r
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Least Angle Regression

Intuition

u1μ0

x2

y*1
x1

Initially, the prediction is 0, the mean of y (remember, everything is
standardized). x1 is most correlated with y , so we move in that
direction (toward the OLS solution of y∗1 ). We move a distance u1
until x2 has as much correlation with the residual.
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Least Angle Regression

Intuition

μ0 μ1

x2 x2

y*1u1
x1

Our new estimate is µ1, a function of just x1. Now we need to start
using x2, so we incorporate that into our estimate.
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Least Angle Regression

Intuition

μ0 μ1

x2 x2

y*1

y *2

u1
x1

We are now moving toward the OLS solution using these two
variables, y∗2 , using a combination of both x1 and x2.
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Least Angle Regression

Intuition

u 2

μ0 μ1

x2 x2

y*1

y *2

u1
x1

We move our estimate in that direction until some other variable has
higher correlation with the residual. We keep moving closer and closer
(but never quite reaching) the OLS solution with the current set of
variables.
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Least Angle Regression
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Least Angle Regression

MPG Dataset

• Predict mpg from features of a
car

1. Number of cylinders
2. Displacement
3. Horsepower
4. Weight
5. Acceleration
6. Year
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Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta
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Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta

Correlation

−200

0

200

acc cyl disp hp kg yr
dim

co
rr

The weight of the car is has the highest (negative) correlation with
the weight, so we add that to the active set.

Jordan Boyd-Graber | Boulder Solving Regression | 14 of 17



Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta

Jordan Boyd-Graber | Boulder Solving Regression | 14 of 17



Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta

Correlation

−200

−100

0

100

200

acc cyl disp hp kg yr
dim

co
rr

After making predictions with only the weight, the year is the most
(positively) correlated, so it gets added to the active set.
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Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta

Correlation

−100

−50

0

50

100

acc cyl disp hp kg yr
dim

co
rr

At this point, the correlations are getting fairly small. Horsepower
wins, but only contributes a tiny amount.
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Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta

Correlation

−25

0

25

acc cyl disp hp kg yr
dim

co
rr

Same story with the number of cylinders . . .
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Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta
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and acceleration.
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Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta

Correlation

−2.5

0.0

2.5

acc cyl disp hp kg yr
dim

co
rr

Now the year is again the most correlated. But take a look at
displacement; it’s negatively correlated (about −2.5).
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Least Angle Regression

Example of LARS
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After accounting for the other variables, it’s positively correlated.
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Least Angle Regression

Example of LARS

β

−1.0

−0.5

0.0

0.5

1.0

acc cyl disp hp kg yr
dim

be
ta

Correlation

−0.1
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0.1

acc cyl disp hp kg yr
dim

co
rr

Now we have our final model.
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Least Angle Regression
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Least Angle Regression

Coefficient Trajectories
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Least Angle Regression

Benefits of LARS

• Interpretation of boosting for continuous problems

• About as difficult as computing OLS for each group of variables

• No combinatorial optimization

• Finds all Lasso solutions
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Least Angle Regression

Recap

• Objective function for regression

• Algorithms for OLS and regularized regression

• Like classification, a workhorse method for continuous data
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