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Roadmap

We talked about what regression is, but now how to solve these
problems

Gradient Descent for OLS
Least Angle Regression for LASSO
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Plan

Gradient Descent for OLS
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Closed Form Estimator

Possible for ridge regression
-1
(XTX+)\I) XTy (1)

But inverting a matrix is hard! Doesn't always scale.

What if your data don't live in memory?
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Closed Form Estimator

Possible for ridge regression
-1
(XTX+)\I) XTy (1)

But inverting a matrix is hard! Doesn't always scale.
What if your data don't live in memory?

Stochastic gradient descent
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Objective

Observations should be close to ng

Error(5) = 1 EN ()/‘ - EXT)2 (2)
N 1
i=1

Equivalent to observations from Gaussian
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OLS Gradient for 2D

For convenience, write predictions as mx + b

a 2 N

= N;‘ x,(v; = (mx, + b))
a 2 N

— == —(y,—(mx,+b
" NZ (v, —(mx, + b))
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OLS Gradient for 2D

For convenience, write predictions as mx + b

0

2 N
== —x(v.—(mx.+b
om N ; (3, = (s +5)

0 _ 2

R > =y, = (mx, + b))

i=1

Possible tweaks: stochastic gradient descent, adding regularization
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Toy Data
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Toy Data
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Running Gradient Descent
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(learning rate is 0.0005)
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Running Gradient Descent
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Running Gradient Descent

slope (m)
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Running Gradient Descent

. Gradient Search 5 Data and Current Line
8 20
5) 15

E

T 4 >10

g

=3

2
N 5
0 0

N -5

23 0 2 [ 6 8 10

y intercept (b)

(learning rate is 0.0005)

ordan Boyd-Graber oulder

egression



Running Gradient Descent
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Running Gradient Descent

10 Gradient Search - Data and Current Line
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Plan

Least Angle Regression
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Can we use Gradient Descent for Lasso?

Objective isn't differentiable

Combinatorial optimization
Similar to SMO algorithm for SVMs
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LAR Algorithm

Start with r = y, B1,...8p = 0. Assume x; are all mean zero and
unit variance.
Until all predictors have been used and (r, x;) = 0V:
Find predictor x; most correlated with residual r
Increase 3; in the direction of sign (r, x;) until some xix has as much
correlation with r as x; or the sign of 3; changes. Call this distance u
Update prediction p, residual r
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Intuition

Xy

Initially, the prediction is 0, the mean of y (remember, everything is
standardized). x; is most correlated with y, so we move in that
direction (toward the OLS solution of y;). We move a distance u;
until xo has as much correlation with the residual.
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Intuition
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Our new estimate is u1, a function of just x;. Now we need to start
using x2, so we incorporate that into our estimate.

Jordan Boyd-Graber lving Regression |

12 of 17



Intuition

We are now moving toward the OLS solution using these two
variables, y5', using a combination of both x; and x;.
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Intuition

We move our estimate in that direction until some other variable has
higher correlation with the residual. We keep moving closer and closer

(but never quite reaching) the OLS solution with the current set of
variables.
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Intuition
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MPG Dataset

Predict mpg from features of a
car

Number of cylinders

Displacement

Horsepower

Weight

Acceleration

Year
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Example of LARS

B

beta
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Example of LARS

beta
corr

I} Correlation

e » 9
dim dim

The weight of the car is has the highest (negative) correlation with
the weight, so we add that to the active set.
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Example of LARS

beta
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Example of LARS

I} Correlation

) e » 9
dim dim

After making predictions with only the weight, the year is the most
(positively) correlated, so it gets added to the active set.

beta
corr
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Example of LARS

B

beta
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Example of LARS

B Correlation

e » 9
dim dim

At this point, the correlations are getting fairly small. Horsepower
wins, but only contributes a tiny amount.

corr

beta
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Example of LARS

beta
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Example of LARS

beta
corr

B Correlation

) acc ey disp I ka
dim dim

Same story with the number of cylinders . ..
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Example of LARS

beta
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Example of LARS

B3 Correlation
| : , ; o B :

and acceleration.

beta
corr

lving Regression | 14 of 17

Jordan Boyd-Graber



Example of LARS

beta
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Example of LARS

Correlation

sp 9 v
dim

I}

corr

beta

dim

Now the year is again the most correlated. But take a look at
displacement; it's negatively correlated (about —2.5).
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Example of LARS

beta
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Example of LARS

B Correlation

p y 5 .
dim

After accounting for the other variables, it's positively correlated.

corr

beta
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Example of LARS

beta
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Example of LARS

B3 Correlation

beta
corr

\“ ;‘\ ) isp
dim : dim

Now we have our final model.
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Example of LARS

beta
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Coefficient Trajectories
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Benefits of LARS

Interpretation of boosting for continuous problems
About as difficult as computing OLS for each group of variables
No combinatorial optimization

Finds all Lasso solutions
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Recap

Objective function for regression
Algorithms for OLS and regularized regression

Like classification, a workhorse method for continuous data
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