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Motivating Example

Goal

Automatically categorize type of call requested by phone customer
(Collect, CallingCard, PersonToPerson, etc.)

• yes I’d like to place a collect call long distance please (Collect)

• operator I need to make a call but I need to bill it to my office
(ThirdNumber)

• yes I’d like to place a call on my master card please (CallingCard)

• I just called a number in sioux city and I musta rang the wrong
number because I got the wrong party and I would like to have
that taken off of my bill (BillingCredit)
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Boosting Approach

• devise computer program for deriving rough rules of thumb

• apply procedure to subset of examples

• obtain rule of thumb

• apply to second subset of examples

• obtain second rule of thumb

• repeat T times
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Details

• How to choose examples

• How to combine rules of thumb
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Details

• How to choose examples
concentrate on hardest examples (those most often misclassified by
previous rules of thumb)

• How to combine rules of thumb
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Details

• How to choose examples
concentrate on hardest examples (those most often misclassified by
previous rules of thumb)

• How to combine rules of thumb
take (weighted) majority vote of rules of thumb
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Boosting

Definition

general method of converting rough rules of thumb into highly
accurate prediction rule

• assume given weak learning algorithm that can consistently find
classifiers (rules of thumb) at least slightly better than random,
say, accuracy ≥ 55% (in two-class setting)

• given sufficient data, a boosting algorithm can provably construct
single classifier with very high accuracy, say, 99%
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Algorithm

Plan

Algorithm

Example

Generalization

Theoretical Analysis
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Algorithm

Formal Description

• Training set (x1, y1) . . . (xm, ym)

• yi ∈ {−1,+1} is the label of instance xi

• For t = 1, . . .T :
◦ Construct distribution Dt on {1, . . . ,m}
◦ Find weak classifier

ht : X 7→ {−1,+1} (1)

with small error εt on Dt :

εt = Pri∼Dt [ht(xi ) 6= yi ] (2)

◦ Output final classifier Hfinal
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Algorithm

AdaBoost (Schapire and Freund)

• Data distribution Dt

◦ D1(i) = 1
m

◦ Given Dt and ht :

Dt+1(i) ∝ Dt(i) · exp { − αtyiht(xi )} (3)

where αt = 1
2 ln
(

1−εt

εt

)
> 0
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Algorithm

AdaBoost (Schapire and Freund)

• Data distribution Dt

◦ D1(i) = 1
m

◦ Given Dt and ht :

Dt+1(i) ∝ Dt(i) · exp { − αtyiht(xi )} (3)

where αt = 1
2 ln
(

1−εt

εt

)
> 0

Bigger if wrong, smaller if right
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Algorithm

AdaBoost (Schapire and Freund)

• Data distribution Dt

◦ D1(i) = 1
m

◦ Given Dt and ht :

Dt+1(i) ∝ Dt(i) · exp { − αtyiht(xi )} (3)

where αt = 1
2 ln
(

1−εt

εt

)
> 0

Weight by how good the weak learner is
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Algorithm

AdaBoost (Schapire and Freund)

• Data distribution Dt

◦ D1(i) = 1
m

◦ Given Dt and ht :

Dt+1(i) ∝ Dt(i) · exp { − αtyiht(xi )} (3)

where αt = 1
2 ln
(

1−εt

εt

)
> 0

• Final classifier:

Hfin(x) = sign

(∑
t

αtht(x)

)
(4)
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Example

Plan

Algorithm

Example

Generalization

Theoretical Analysis
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Example

Toy Example
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Example

Round 1
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Example

Round 2
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Example

Round 3
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Example

Final Classifier
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Generalization
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Generalization

Generalization
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Generalization

Generalization
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Theoretical Analysis

Plan

Algorithm

Example

Generalization

Theoretical Analysis
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Theoretical Analysis

Training Error

First, we can prove that the training error goes down. If we write the
the error at time t as 1

2 − γt ,

R̂(h) ≤ exp

{
−2
∑

t

γ2t

}
(5)

• If ∀t : γt ≥ γ > 0, then R̂(h) ≤ exp
{
−2γ2T

}
Adaboost: do not need γ or T a priori
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Theoretical Analysis

Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

Dt+1(i) =
Dt(i)exp {−αtyiht(xi )}

Zt
(6)

Dt−1(i)exp {−αt−1yiht−1(xi )} exp {−αtyiht(xi )}
Zt−1Zt

(7)

exp
{
−yi

∑t
s=1 αshs(xi )

}
m
∏t

s=1 Zs
(8)
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Theoretical Analysis

Training Error Intuition

• On round t weight of examples incorrectly classified by ht is
increased

• If xi incorrectly classified by HT , then xi wrong on (weighted)
majority of ht ’s
◦ If xi incorrectly classified by HT , then xi must have large weight under

DT

◦ But there can’t be many of them, since total weight ≤ 1
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Theoretical Analysis

Training Error Proof: It’s all about the Normalizers

R̂(h) =
1

m

m∑
i=1

1 [yig(xi ) ≤ 0] (9)

(10)

Definition of training error
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Theoretical Analysis

Training Error Proof: It’s all about the Normalizers

R̂(h) =
1

m

m∑
i=1

1 [yig(xi ) ≤ 0] (9)

≤ 1

m

m∑
i=1

exp {−yig(xi )} (10)

(11)

1 [u ≤ 0] ≤ exp−u is true for all real u.
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Theoretical Analysis

Training Error Proof: It’s all about the Normalizers

R̂(h) =
1

m

m∑
i=1

1 [yig(xi ) ≤ 0] (9)

≤ 1

m

m∑
i=1

exp {−yig(xi )} (10)

(11)

Final distribution Dt+1(i)

Dt+1(i) =
exp

{
−yi

∑t
s=1 αshs(xi )

}
m
∏t

s=1 Zs
(12)
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Theoretical Analysis

Training Error Proof: It’s all about the Normalizers

R̂(h) =
1

m

m∑
i=1

1 [yig(xi ) ≤ 0] (9)

≤ 1

m

m∑
i=1

exp {−yig(xi )} (10)

=
1

m

m∑
i=1

[
m

T∏
t=1

Zt

]
DT+1(i) (11)

(12)

m’s cancel, D is a distribution
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Theoretical Analysis

Training Error Proof: It’s all about the Normalizers

R̂(h) =
1

m

m∑
i=1

1 [yig(xi ) ≤ 0] (9)

≤ 1

m

m∑
i=1

exp {−yig(xi )} (10)

=
1

m

m∑
i=1

[
m

T∏
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Theoretical Analysis

Training Error Proof: Weak Learner Errors

Single Weak Learner

Zt =
m∑

i=1

Dt(i)exp {−αtyiht(xi )} (13)

= (14)

= (15)

= (16)
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Theoretical Analysis

Training Error Proof: Weak Learner Errors

Single Weak Learner

Zt =
m∑

i=1

Dt(i)exp {−αtyiht(xi )} (13)

=
∑

i :right

Dt(i)exp {−αt}+
∑

i :wrong
Dt(i)exp {αt} (14)

= (15)

= (16)
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Theoretical Analysis

Training Error Proof: Weak Learner Errors

Single Weak Learner

Zt =
m∑

i=1

Dt(i)exp {−αtyiht(xi )} (13)

=
∑

i :right

Dt(i)exp {−αt}+
∑

i :wrong
Dt(i)exp {αt} (14)

=(1− εt)exp {−αt}+ εtexp {αt} (15)

= (16)
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Theoretical Analysis

Training Error Proof: Weak Learner Errors

Single Weak Learner

Zt =
m∑

i=1

Dt(i)exp {−αtyiht(xi )} (13)

=
∑

i :right

Dt(i)exp {−αt}+
∑

i :wrong
Dt(i)exp {αt} (14)

=(1− εt)exp {−αt}+ εtexp {αt} (15)

=(1− εt)

√
εt

1− εt
+ εt

√
1− εt

εt
(16)
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Theoretical Analysis

Training Error Proof: Weak Learner Errors

Single Weak Learner

Zt =(1− εt)

√
εt

1− εt
+ εt

√
1− εt

εt
(13)

Normalization Product

T∏
t=1

Zt =
T∏

t=1

2
√
εt(1− εt) =

√
1− 4

(
1

2
− εt

)2

(14)

(15)
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Theoretical Analysis

Training Error Proof: Weak Learner Errors

Normalization Product

T∏
t=1

Zt =
T∏

t=1

2
√
εt(1− εt) =

√
1− 4

(
1

2
− εt

)2

(13)

≤
T∏

t=1

exp

{
−2

(
1

2
− εt

)2
}

(14)

(15)
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Theoretical Analysis

Training Error Proof: Weak Learner Errors

Normalization Product

T∏
t=1

Zt =
T∏

t=1

2
√
εt(1− εt) =

√
1− 4

(
1

2
− εt

)2

(13)

≤
T∏

t=1

exp

{
−2

(
1

2
− εt

)2
}

(14)

=exp

{
−2

T∑
t=1

(
1

2
− εt

)2
}

(15)
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Theoretical Analysis

Generalization

VC Dimension

≤ 2(d + 1)(T + 1) lg [(T + 1)e]

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an L1 margin, and
the weak learnability assumption requires data to be linearly separable
with margin 2γ
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Theoretical Analysis

Practical Advantages of AdaBoost

• fast

• simple and easy to program

• no parameters to tune (except T )

• flexible: can combine with any learning algorithm

• no prior knowledge needed about weak learner

• provably effective, provided can consistently find rough rules of
thumb
◦ shift in mind set: goal now is merely to find classifiers barely better

than random guessing

• versatile
◦ can use with data that is textual, numeric, discrete, etc.
◦ has been extended to learning problems well beyond binary

classification
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Theoretical Analysis

Caveats

• performance of AdaBoost depends on data and weak learner

• consistent with theory, AdaBoost can fail if

• weak classifiers too complex
◦ overfitting

• weak classifiers too weak (γt → 0 too quickly)
◦ underfitting
◦ low margins → overfitting

• empirically, AdaBoost seems especially susceptible to uniform noise
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