@ Department of Computer Science

7 UNIVERSITY OF COLORADO BOULDER

Boosting

Jordan Boyd-Graber

University of Colorado Boulder

Slides adapted from Rob Schapire

Jordan Boyd-Graber | Boulder Boosting | 1of25

Motivating Example

Goal

Automatically categorize type of call requested by phone customer
(Collect, CallingCard, PersonToPerson, etc.)

yes I'd like to place a collect call long distance please (Collect)
operator | need to make a call but | need to bill it to my office
(ThirdNumber)

yes I'd like to place a call on my master card please (CallingCard)

| just called a number in sioux city and | musta rang the wrong
number because | got the wrong party and | would like to have
that taken off of my bill (BillingCredit)

Jordan Boyd-Graber | Boulder

Boosting | 2 of 25

Boosting Approach

devise computer program for deriving rough rules of thumb
apply procedure to subset of examples

obtain rule of thumb

apply to second subset of examples

obtain second rule of thumb

repeat T times

Jordan Boyd-Graber | Boulder Boosting |

Details

How to choose examples

How to combine rules of thumb

Jordan Boyd-Graber

Details

How to choose examples
concentrate on hardest examples (those most often misclassified by
previous rules of thumb)

How to combine rules of thumb

Jordan Boyd-Graber | Boulder

Details

How to choose examples
concentrate on hardest examples (those most often misclassified by

previous rules of thumb)

How to combine rules of thumb
take (weighted) majority vote of rules of thumb

Boosting |

Jordan Boyd-Graber | Boulder

Boosting

Definition
general method of converting rough rules of thumb into highly
accurate prediction rule

assume given weak learning algorithm that can consistently find
classifiers (rules of thumb) at least slightly better than random,
say, accuracy > 55% (in two-class setting)

given sufficient data, a boosting algorithm can provably construct
single classifier with very high accuracy, say, 99%

Jordan Boyd-Graber | Boulder Boosting | 5 of 25

Plan

Algorithm

Jordan Boyd-Graber | Boulder Boostin, | 6 of

Formal Description

Training set (x1,y1) .. (Xm, Ym)
yi € {—1,+1} is the label of instance x;

Boosting |

Formal Description

Training set (x1,y1) .. (Xm, Ym)
yi € {—1,+1} is the label of instance x;
Fort=1,...T:

Construct distribution D; on {1,..., m}
Find weak classifier
he: X = {—1,+1} (1)

with small error €; on D;:

€t = Priwp, [h:(xi) # yil (2)

Jordan Boyd-Graber | Boulder Boosting | 7of 25

Formal Description

Training set (x1,y1) .. (Xm, Ym)
yi € {—1,+1} is the label of instance x;
Fort=1,...T:

Construct distribution D; on {1,..., m}
Find weak classifier
he: X = {—1,+1} (1)

with small error €; on D;:

€t = Priwp, [h:(xi) # yil (2)

Output final classifier Hypa

Jordan Boyd-Graber | Boulder Boosting | 7of 25

AdaBoost (Schapire and Freund)

Data distribution D;

Jordan Boyd-Graber

AdaBoost (Schapire and Freund)

Data distribution D;

Dy(i) = +
Given D; and h;:

Diy1(i) o< De(i) - exp{ — aryihe(xi)} (3)

where a; = % In (g) >0

€t

Jordan Boyd-Graber | Boulder Boosting | 8 of 25

AdaBoost (Schapire and Freund)

Data distribution D;

Dl(l') = #
Given D; and h;:

Diy1(i) o< De(i) - exp{ — aryihi(xi)} (3)
where a; = % In (g) >0

€t

Bigger if wrong, smaller if right

Jordan Boyd-Graber | Boulder Boosting | 8 of 25

AdaBoost (Schapire and Freund)

Data distribution D;

Dl(l') = #
Given D; and h;:

Dr11(i) oc De(i) - exp { — aryihe(xi)} (3)
where a; = % In (g) >0

€t

Weight by how good the weak learner is

Jordan Boyd-Graber | Boulder Boosting | 8 of 25

AdaBoost (Schapire and Freund)

Data distribution D;

Dl(l') = %
Given D; and h;:

Deya(i) o< De(i) - exp { — ceyihe(xi)} 3)

where a; = % In (1;—?) >0

Final classifier:

Hfin(x) = sign (Z Oétht(X)> (4)

Jordan Boyd-Graber | Boulder Boosting | 8 of 25

Plan

Example

ordan Boyd-Graber oulder

Toy Example

Round 1

Jordan Boyd-Graber | Boosti

Round 2

Jordan Boyd-Graber | Boulder Boosting | 120f25

Round 3

Jordan Boyd-Graber |

Boulder

Boosting |

13 of 25

Final Classifier

Jordan Boyd-Graber | Boosti

Plan

Generalization

Jordan Boyd-Graber | Boulder

Generalization

€rror

20 40 60 80 100
of rounds (7)

Jordan Boyd-Graber | Boulder Boosting | 16 of 25

Generalization

C4.5 test error

(boosting C4.5 on
test “letter” dataset)

]\L train
10 100 1000
of rounds (T)

Jordan Boyd-Graber | Boulder Boosting | 16 of 25

Plan

Theoretical Analysis

Jordan Boyd-Graber | Boulder Boosting | 17 of 25

Training Error

First, we can prove that the training error goes down. If we write the
the error at time t as % — Yt

R(h) <e><p{ 22%} (5)

If Yt : ¢ >~ >0, then R(h) < exp {—272T}

Adaboost: do not need y or T a priori

Jordan Boyd-Graber | Boulder Boosting | 18 0f 25

Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

D:(i)exp {—aryih:(xi)}

Dt+1(l') = Zt (6)
D;1(i)exp {—at—1yihe—1(x;)} exp { —aeyihe(xi)} (7)
Zi 1Z;
exp { —yi 3og_1 ashs(xi)}

m H::l Zs

Jordan Boyd-Graber | Boulder Boosting | 19 of 25

Training Error Intuition

On round t weight of examples incorrectly classified by h; is
increased
If x; incorrectly classified by Hr, then x; wrong on (weighted)
majority of h;'s
If x; incorrectly classified by Hr, then x; must have large weight under
Dr
But there can't be many of them, since total weight <1

Jordan Boyd-Graber | Boulder Boosting

Training Error Proof: It’s all about the Normalizers

R(W =" 1lyiglx) < 0] 9
i=1
(10)

Definition of training error

Jordan Boyd-Graber | Boulder Boosting | 21 0f25

Training Error Proof: It’s all about the Normalizers

R(W =31 () <0)
i=1

<=3 exp {-yigle)} (10)
i=1

1[u < 0] <exp—uis true for all real u.

Jordan Boyd-Graber | Boulder Boosting | 21 0f25

Training Error Proof: It’s all about the Normalizers

R(M =31 [yg(x) <0)
i=1

<> exp {-yig(x)) (10)
i=1

(11)

Final distribution D;1 (/)

exp {_)/i Z.ﬁ:l ashs(xi)}
i HE:I Zs

Des1(i) = (12)

Jordan Boyd-Graber | Boulder Boosting | 21 0f25

Training Error Proof: It’s all about the Normalizers

R(R) =— > 1 lyiglx) <0 ©
i=1

<) exp {-viglx)} (10)
i=1

1 m T

Dr41(i) (11)

(12)

m's cancel, D is a distribution

Jordan Boyd-Graber | Boulder Boosting | 21 0f25

Training Error Proof: It’s all about the Normalizers

R(h) =~ > 11yig(x) < ©)
i=1
<3 e {—yig()) (10)
1 lr:nl .
:;Z [mHZt Dr41(i) (11)
i= t=1
. 1
=1] z (12)
t=1

Jordan Boyd-Graber | Boulder Boosting |

21 of 25

Training Error Proof: Weak Learner Errors

Single Weak Learner

Z; :ZDt(")eXP{*atYiht(Xi)} (13)

i=1

Jordan Boyd-Graber | Boulder Boosting | 22 0f 25

Training Error Proof: Weak Learner Errors

Single Weak Learner

Z; :ZDt(i)exp{—aty,-ht(x,-)} (13)

i=1
= > Di(i)exp{—a:}+ > De(i)exp{o:} (14)
i:right I,

Jordan Boyd-Graber | Boulder Boosting | 22 0f 25

Training Error Proof: Weak Learner Errors

Single Weak Learner

Z; :ZDt(i)exp{—aty,-ht(x,-)} (13)

i=1

= Y Dii)exp{-ac}+ > Dii)exp{a:t (14)
i-right i-wrong

=(1 — er)exp{—a} + erexp {o} (15)

= (16)

Jordan Boyd-Graber | Boulder Boosting | 22 0f 25

Training Error Proof: Weak Learner Errors

Single Weak Learner

Z; :Z D:(i)exp {—aryih:(x;)} (13)

i=1

= > Di(iJexp{—ar}+ > De(exp{or} (14)
i:right irwrong

=(1— ¢ exp{ ar} + erexp {a;} (15)
—(1-«) Lo (16)

Jordan Boyd-Graber | Boulder Boosting | 22 0f 25

Training Error Proof: Weak Learner Errors

Single Weak Learner

€ 1—c¢
Ze=(1-e)y/1 _tet + ey - : (13)

Normalization Product

T T 1 2
HZt:HZ\/et(l—et):\/1—4<2—6t> (14)
t=1 t=1

(15)

Jordan Boyd-Graber | Boulder Boosting | 22 0f 25

Training Error Proof: Weak Learner Errors

Normalization Product

1j=

Jordan Boyd-Graber | Boulder Boosting |

22 of 25

Training Error Proof: Weak Learner Errors

Normalization Product

—

N

Il
—

N

)

"

—~~

(=Y
T

)

&

N

Il
$

\

S
Y
N —

\

)

e
~__

N

—~

—

w
N—r

t=1 t=1
gtf[lexp{—2 <;—et)2} (14)
—exp {—21:2: <; - et>2} (15)

Jordan Boyd-Graber | Boulder Boosting |

22 of 25

Generalization

VC Dimension
<2(d+1)(T+1)Ig[(T +1)e]

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an L; margin, and
the weak learnability assumption requires data to be linearly separable
with margin 2~

Jordan Boyd-Graber | Boulder Boosting | 23 0f25

Practical Advantages of AdaBoost

fast

simple and easy to program

no parameters to tune (except T)

flexible: can combine with any learning algorithm

no prior knowledge needed about weak learner

provably effective, provided can consistently find rough rules of
thumb

shift in mind set: goal now is merely to find classifiers barely better
than random guessing

versatile

can use with data that is textual, numeric, discrete, etc.
has been extended to learning problems well beyond binary
classification

Jordan Boyd-Graber | Boulder

Boosting

Caveats

performance of AdaBoost depends on data and weak learner
consistent with theory, AdaBoost can fail if
weak classifiers too complex
overfitting
weak classifiers too weak (y: — 0 too quickly)

underfitting
low margins — overfitting

empirically, AdaBoost seems especially susceptible to uniform noise

Boosting | 250f 25

Jordan Boyd-Graber | Boulder

	Algorithm
	Example
	Generalization
	Theoretical Analysis

