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Motivating Example

Goal

Automatically categorize type of call requested by phone customer
(Collect, CallingCard, PersonToPerson, etc.)

yes I'd like to place a collect call long distance please (Collect)
operator | need to make a call but | need to bill it to my office
(ThirdNumber)

yes I'd like to place a call on my master card please (CallingCard)

| just called a number in sioux city and | musta rang the wrong
number because | got the wrong party and | would like to have
that taken off of my bill (BillingCredit)
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Boosting Approach

devise computer program for deriving rough rules of thumb
apply procedure to subset of examples

obtain rule of thumb

apply to second subset of examples

obtain second rule of thumb

repeat T times
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Details

How to choose examples

How to combine rules of thumb
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Details

How to choose examples
concentrate on hardest examples (those most often misclassified by
previous rules of thumb)

How to combine rules of thumb
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Details

How to choose examples
concentrate on hardest examples (those most often misclassified by

previous rules of thumb)

How to combine rules of thumb
take (weighted) majority vote of rules of thumb
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Boosting

Definition
general method of converting rough rules of thumb into highly
accurate prediction rule

assume given weak learning algorithm that can consistently find
classifiers (rules of thumb) at least slightly better than random,
say, accuracy > 55% (in two-class setting)

given sufficient data, a boosting algorithm can provably construct
single classifier with very high accuracy, say, 99%
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Plan

Algorithm
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Formal Description

Training set (x1,y1) .. (Xm, Ym)
yi € {—1,+1} is the label of instance x;
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Formal Description

Training set (x1,y1) .. (Xm, Ym)
yi € {—1,+1} is the label of instance x;
Fort=1,...T:

Construct distribution D; on {1,..., m}
Find weak classifier
he: X = {—1,+1} (1)

with small error €; on D;:

€t = Priwp, [h:(xi) # yil (2)
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Formal Description

Training set (x1,y1) .. (Xm, Ym)
yi € {—1,+1} is the label of instance x;
Fort=1,...T:

Construct distribution D; on {1,..., m}
Find weak classifier
he: X = {—1,+1} (1)

with small error €; on D;:

€t = Priwp, [h:(xi) # yil (2)

Output final classifier Hypa
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AdaBoost (Schapire and Freund)

Data distribution D;
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AdaBoost (Schapire and Freund)

Data distribution D;

Dy(i) = +
Given D; and h;:

Diy1(i) o< De(i) - exp{ — aryihe(xi)} (3)

where a; = % In (g) >0

€t
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AdaBoost (Schapire and Freund)

Data distribution D;

Dl(l') = #
Given D; and h;:

Diy1(i) o< De(i) - exp{ — aryihi(xi)} (3)
where a; = % In (g) >0

€t

Bigger if wrong, smaller if right
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AdaBoost (Schapire and Freund)

Data distribution D;

Dl(l') = #
Given D; and h;:

Dr11(i) oc De(i) - exp { — aryihe(xi)} (3)
where a; = % In (g) >0

€t

Weight by how good the weak learner is
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AdaBoost (Schapire and Freund)

Data distribution D;

Dl(l') = %
Given D; and h;:

Deya(i) o< De(i) - exp { — ceyihe(xi)} 3)

where a; = % In (1;—?) >0

Final classifier:

Hfin(x) = sign (Z Oétht(X)> (4)
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Plan

Example
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Toy Example




Round 1
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Round 2
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Round 3
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Final Classifier
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Plan

Generalization
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Generalization

€rror

20 40 60 80 100
# of rounds (7)
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Generalization

C4.5 test error

(boosting C4.5 on
test “letter” dataset)

]\L train
10 100 1000
# of rounds (T)
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Plan

Theoretical Analysis
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Training Error

First, we can prove that the training error goes down. If we write the
the error at time t as % — Yt

R(h) <e><p{ 22%} (5)

If Yt : ¢ >~ >0, then R(h) < exp {—272T}

Adaboost: do not need y or T a priori
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Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

D:(i)exp {—aryih:(xi)}

Dt+1(l') = Zt (6)
D;1(i)exp {—at—1yihe—1(x;)} exp { —aeyihe(xi)} (7)
Zi 1Z;
exp { —yi 3og_1 ashs(xi)}

m H::l Zs
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Training Error Intuition

On round t weight of examples incorrectly classified by h; is
increased
If x; incorrectly classified by Hr, then x; wrong on (weighted)
majority of h;'s
If x; incorrectly classified by Hr, then x; must have large weight under
Dr
But there can't be many of them, since total weight <1
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Training Error Proof: It’s all about the Normalizers

R(W =" 1lyiglx) < 0] 9
i=1
(10)

Definition of training error
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Training Error Proof: It’s all about the Normalizers

R(W =31 () <0 )
i=1

<=3 exp {-yigle)} (10)
i=1

1[u < 0] <exp—uis true for all real u.
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Training Error Proof: It’s all about the Normalizers

R(M =31 [yg(x) <0 )
i=1

<> exp {-yig(x)) (10)
i=1

(11)

Final distribution D;1 (/)

exp {_)/i Z.ﬁ:l ashs(xi)}
i HE:I Zs

Des1(i) = (12)
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Training Error Proof: It’s all about the Normalizers

R(R) =— > 1 lyiglx) <0 ©
i=1

<) exp {-viglx)} (10)
i=1

1 m T

Dr41(i) (11)

(12)

m's cancel, D is a distribution
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Training Error Proof: It’s all about the Normalizers

R(h) =~ > 11yig(x) < ©)
i=1
<3 e {—yig()) (10)
1 lr:nl .
:;Z [mHZt Dr41(i) (11)
i= t=1
. 1
=1] z (12)
t=1
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Training Error Proof: Weak Learner Errors

Single Weak Learner

Z; :ZDt(")eXP{*atYiht(Xi)} (13)

i=1
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Training Error Proof: Weak Learner Errors

Single Weak Learner

Z; :ZDt(i)exp{—aty,-ht(x,-)} (13)

i=1
= > Di(i)exp{—a:}+ > De(i)exp{o:}  (14)
i:right I,
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Training Error Proof: Weak Learner Errors

Single Weak Learner

Z; :ZDt(i)exp{—aty,-ht(x,-)} (13)

i=1

= Y Dii)exp{-ac}+ > Dii)exp{a:t  (14)
i-right i-wrong

=(1 — er)exp{—a} + erexp {o} (15)

= (16)
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Training Error Proof: Weak Learner Errors

Single Weak Learner

Z; :Z D:(i)exp {—aryih:(x;)} (13)

i=1

= > Di(iJexp{—ar}+ > De(exp{or}  (14)
i:right irwrong

=(1— ¢ exp{ ar} + erexp {a;} (15)
—(1-«) Lo (16)
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Training Error Proof: Weak Learner Errors

Single Weak Learner

€ 1—c¢
Ze=(1-e)y/1 _tet + ey - : (13)

Normalization Product

T T 1 2
HZt:HZ\/et(l—et):\/1—4<2—6t> (14)
t=1 t=1

(15)
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Training Error Proof: Weak Learner Errors

Normalization Product

1j=
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Training Error Proof: Weak Learner Errors

Normalization Product
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t=1 t=1
gtf[lexp{—2 <;—et)2} (14)
—exp {—21:2: <; - et>2} (15)
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Generalization

VC Dimension
<2(d+1)(T+1)Ig[(T +1)e]

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an L; margin, and
the weak learnability assumption requires data to be linearly separable
with margin 2~
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Practical Advantages of AdaBoost

fast

simple and easy to program

no parameters to tune (except T)

flexible: can combine with any learning algorithm

no prior knowledge needed about weak learner

provably effective, provided can consistently find rough rules of
thumb

shift in mind set: goal now is merely to find classifiers barely better
than random guessing

versatile

can use with data that is textual, numeric, discrete, etc.
has been extended to learning problems well beyond binary
classification
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Caveats

performance of AdaBoost depends on data and weak learner
consistent with theory, AdaBoost can fail if
weak classifiers too complex
overfitting
weak classifiers too weak (y: — 0 too quickly)

underfitting
low margins — overfitting

empirically, AdaBoost seems especially susceptible to uniform noise
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