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Administrivia

• SVM homework and Boosting homework’s posted

• Dates moved a week later for both
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SMO Algorithm

Positive

(-2, 2)
(0, 4)
(2, 1)

Negative

(-2, -3)
(0, -1)
(2, -3)

• Initially, all alphas are zero

~α =< 0, 0, 0, 0, 0, 0 > (1)

• Intercept b is also zero

• Regularization C = π
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SMO Optimization for i = 0, j = 4: Predictions and Step

• Prediction: f (x0)

• Prediction: f (x4)

• Error: E0

• Error: E4

• Step η
(2)
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• Prediction: f (x0) = 0

• Prediction: f (x4) = 0

• Error: E0 = −1
• Error: E4 = +1

• Step η
η = 2〈x0, x4〉 − 〈x0, x0〉 − 〈x4, x4〉 (2)
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SMO Optimization for i = 0, j = 4: Predictions and Step

• Prediction: f (x0) = 0

• Prediction: f (x4) = 0

• Error: E0 = −1
• Error: E4 = +1

• Step η

η = 2〈x0, x4〉 − 〈x0, x0〉 − 〈x4, x4〉 = 2 · −2− 8− 1 = −13 (2)
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SMO Optimization for i = 0, j = 4: Bounds

• Lower and upper bounds for αj

L = max(0, αj − αi ) (3)

H = min(C ,C + αj − αi ) (4)
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SMO Optimization for i = 0, j = 4: Bounds

• Lower and upper bounds for αj

L = max(0, αj − αi ) = 0 (3)

H = min(C ,C + αj − αi ) = π (4)
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SMO Optimization for i = 0, j = 4: α update

New value for αj

α∗
j = αj −

yj(Ei − Ej)

η
(5)

(6)
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New value for αi
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i = αi + yiyj

(
α
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)
= αj =

2

13
(6)
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Margin
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Find weight vector and bias

• Weight vector

~w =
m∑
i=1

αiyi~xi (7)

• Bias

b =b(old) − Ei − yi (α
∗
i − α

(old)
i )xi · xi − yj(α

∗
j − α

(old)
j )xi · xj (8)

(9)
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αiyi~xi =
2

13

[
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2

]
− 2

3

[
0
−1

]
=

[−4
13
6
13
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(7)

• Bias

b =b(old) − Ei − yi (α
∗
i − α

(old)
i )xi · xi − yj(α

∗
j − α

(old)
j )xi · xj (8)

=1− 2

13
· 8 + 2

13
· −2 = −0.54 (9)

Jordan Boyd-Graber | Boulder Optimizing Support Vector Machines | 9 of 1



SMO Optimization for i = 2, j = 4

Let’s skip the boring stuff

• E2 = −1.69
• E4 = 0.00

• η = −8

• α4 = α
(old)
j − yj (Ei−Ej )

η

• α2 = α
(old)
i + yiyj

(
α
(old)
j − αj

)
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η = 0.15 + −1.69
−8 = 0.37

• α2 = α
(old)
i + yiyj

(
α
(old)
j − αj

)
= 0− (0.15− 0.37) = 0.21
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Margin
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Weight vector and bias

• Bias b = −0.12
• Weight vector

~w =
m∑
i=1

αiyi~xi (10)
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Weight vector and bias

• Bias b = −0.12
• Weight vector

~w =
m∑
i=1

αiyi~xi =

[
0.12
0.88

]
(10)
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Another Iteration (i = 0, j = 2)
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SMO Algorithm

• Convenient approach for solving: vanilla, slack, kernel approaches

• Convex problem

• Scalable to large datasets (implemented in scikit learn)

• What we didn’t do:
◦ Check KKT conditions
◦ Randomly choose indices
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