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Roadmap

• Content Questions

• Administrivia Questions

• NB Exercise
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Content Questions

Outline
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Administrivia Questions

Outline
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Administrivia Questions

Administrivia Announcements

• Use Piazza

• HW2 Posted
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NB Example

Outline
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NB Example

Documents

D1: Spam

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam

cialis dog

D2: Ham
man dog

D4: Ham
logistic mother logistic abuja

D6: Ham
bagel deal
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What’s |C| and |V |?
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NB Example

Documents

D1: Spam

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam
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man dog
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logistic mother logistic abuja
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NB Example

Background Probabilities
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NB Example

Background Probabilities

D1: Spam

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam

cialis dog

D2: Ham
man dog

D4: Ham
logistic mother logistic abuja

D6: Ham
bagel deal

What’s P̂(cj)?
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NB Example

Background Probabilities

• For spam:

(1)

• For ham:

(2)
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P̂(cj = spam)=
Nc +1

N + |C|
(1)

(2)

• For ham:

(3)
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NB Example

Background Probabilities

• For spam:

P̂(cj = spam)=
Nc +1

N + |C|
(1)

=
4+1

7+9
(2)

=
5

9
(3)

• For ham:

P̂(cj = ham)=
Nc +1

N + |C|
(4)

=
3+1

7+2
(5)

=
4

9
(6)
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NB Example

Conditional Probabilities

D1: Spam

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam

cialis dog

D2: Ham
man dog

D4: Ham
logistic mother logistic abuja

D6: Ham
bagel deal

What’s the conditional probability P̂(w = dog |c)?
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NB Example

Conditional Probabilities

• For spam:

(7)

• For ham:

(8)

Machine Learning: Jordan Boyd-Graber | Boulder | 13 of 1



NB Example

Conditional Probabilities

• For spam:

P̂(w = dog |c)=
Tcw +1

(
∑

w ′∈V Tcw ′)+ |V |
(7)

(8)

• For ham:

(9)
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NB Example

Prediction

What if you saw a document with the word “dog”?

• For spam:

(13)

• For ham:

(14)
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P(wi |c) (13)
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NB Example

Prediction

What if you saw a document with the word “dog”?

• For spam:

P(c|d)∝P(c)
∏

1≤i≤nd

P(wi |c) (13)

=0.07 (14)

• For ham:

P(c|d)∝P(c)
∏

1≤i≤nd

P(wi |c) (15)

=0.06 (16)

These aren’t probabilities? What if we wanted the real probabilities?
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NB Example

Conditional Probabilities

• For spam:

(17)

• For ham:

(18)
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(
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NB Example

Prediction

What if you saw a document with the words “logistic” “logistic” “dog”?

• For spam:

(23)

• For ham:

(24)
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NB Example

HW2

• Posted this weekend

• Logistic regression w/ stochastic gradient

• Helpful to look at it before next week (very similar to in-class exercise)
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