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Find the maximum margin hyperplane
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Which are the support vectors?
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Walkthrough example: building an SVM over the data shown

Working geometrically:

• If you got 0= .5x + y −2.75, close!

• Set up system of equations

w1 +w2 +b =−1 (1)

3

2
w1 +2w2 +b = 0 (2)

2w1 +3w2 +b =+1 (3)

The SVM decision boundary is:
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Cannonical Form

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Walkthrough example: building an SVM over the data set
shown in the figure

Working geometrically:
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Schütze: Support vector machines 42 / 55

w1x1 +w2x2 +b
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Cannonical Form

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Walkthrough example: building an SVM over the data set
shown in the figure

Working geometrically:
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Schütze: Support vector machines 42 / 55

.4x1 + .8x2−2.2

• .4 ·1+ .8 ·1−2.2=−1

• .4 · 3
2 + .8 ·2= 0

• .4 ·2+ .8 ·3−2.2=+1
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What’s the margin?

• Distance to closest point
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Slack Example

Decision function:

w =

�

− 1
4

1
4

�

;b =−
1

4

• What are the
support vectors?

• Which have
non-zero slack?

• Compute ξB,ξE
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Decision Boundary
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Computing slack

yi(~wi · xi +b)≥ 1−ξi (6)

Point B

yB(~wB · xB +b) = (7)

−1(−0.25 · −5+0.25 ·1−0.25) =−1.25 (8)

Thus, ξB = 2.25

Point E

yE(~wE · xE +b) = (9)

1(−0.25 ·6+0.25 ·3+−0.25) =−1 (10)

Thus, ξE = 2
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Computing slack

yi(~wi · xi +b)≥ 1−ξi (11)

Point A

yA(~wA · xA +b) = (12)

1(0 · −5+2 ·0+−5) =−5 (13)

Thus, ξA = 6

Point C

yC(~wC · xC +b) = (14)

1(0 · −5+2 ·2+−5) =−1 (15)

Thus, ξC = 2
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Which one is better?

A
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Decision Boundary
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IDecision Boundary

• Which decision boundary (wide / narrow) has the better objective?

min
w

1

2
||w ||2 +C

∑

i

ξi (16)

• In this case it doesn’t matter. Common C values: 1.0, 1
m
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Importance of C

• Need to do cross-validation to select C

• Don’t trust default values

• Look at values with high ξ; are they bad data?

• Other courses: how to find w
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QFR

I have always found that mercy bears
richer fruits than strict justice.

• Tenure

◦ Research
◦ Service
◦ Grad Teaching/Advising
◦ Undergrad Teaching

• QFR are like my grades

• Numbers are insanely important
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