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Which hyperplane?
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Which hyperplane?

For linearly separable training sets: there are infinitely many separating
hyperplanes.

They all separate the training set perfectly ...

... but they behave differently on test data.

Error rates on new data are low for some, high for others.

How do we find a low-error separator?
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Support vector machines

* Machine-learning research in the last two decades has improved
classifier effectiveness.

* New generation of state-of-the-art classifiers: support vector machines
(SVMs), boosted decision trees, regularized logistic regression, neural
networks, and random forests

¢ Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision
boundary between two classes that is maximally far from any point in the
training data (possibly discounting some points as outliers or noise)
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Support Vector Machines

e 2-class training data
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Support Vector Machines

e 2-class training data

e decision boundary —
linear separator
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Support Vector Machines

e 2-class training data

e decision boundary —
linear separator

e criterion: being
maximally far away
from any data point —
determines classifier
margin

M. Margin is
maximized
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Support Vector Machines

e 2-class training data

e decision boundary —
linear separator

e criterion: being
maximally far away
from any data point —
determines classifier
margin

e linear separator
position defined by
support vectors

Maximum
margin

decision
hyperplane ™

Support vectors

N
M. Margin is
maximized
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Why maximize the margin?

¢ Points near decision r'\:aarxg'lr:”m Support vectors

surface — uncertain decision
classification decisions hyperplane ™

¢ A classifier with a large
margin is always .
confident

¢ Gives classification
safety margin o
(measurement or . N Mirginis
variation) © maximized
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Why maximize the margin?

* SVM classifier: large margin
around decision boundary

e compare to decision hyperplane:
place fat separator between

L ] @
classes .
o unique solution o
¢ decreased memory capacity o

* increased ability to correctly
generalize to test data
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Equation
e Equation of a hyperplane
W-x;+b=0 (1)

¢ Distance of a point to hyperplane

w-x;+b
- D 2)
llwll
* The margin p is given by
Ww-x;+b 1
p= mn A1 @)
(xw)es  lwll [lwl|
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* This is because for any point on the marginal hyperplane, w-x + b= %1
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Optimization Problem

We want to find a weight vector i and bias b that optimize

]
min —||w|[? (4)
Wb 2

»

subject to y;(w-x;+b) =1, Vie[1,m].
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