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Mixture Models

K-means associates data with cluster centers.

What if we actually modeled the data?

real-valued data
observation Xx; in cluster ¢;
have K clusters

model each cluster with a Gaussian distribution
X;| ¢ =k ~ N(ux, Zk)

Uk is mean vector, X, is covariance matrix
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Mixture Models

Gaussian mixture model (K = 2):
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Mixture Models

Why mixture models?
more flexible: can account for clusters with different shapes
have data model (will be useful for choosing K)
less sensitive to data scaling
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Multivariate Gaussian
Multivariate Gaussian distribution for x € R?:
p(x| 1, %) = (2m) 2 || % @720 0w

U is vector of means
2. is covariance matrix
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Multivariate Gaussian
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Multivariate Gaussian
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Fitting a Mixture Model

Mixture model:
observation Xx; in cluster ¢; with K clusters

model each cluster with a Gaussian distribution

;| ¢ =k~ N(p, X)

How do we find ¢, ..., ¢, (clusters) and (uy,%4),..., (Uk, L) (cluster
centers)?
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Fitting a Mixture Model

First, let's simplify the model:

covariance matrices have only diagonal elements,
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set 0% =--- = 0%, suppose known
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Fitting a Mixture Model

Next, use a method similar to K-means:

start with random cluster centers
associate observations to clusters by (log-)likelihood,
d

d 1
L(x;lci=kK)=—= |og(27f)— —log (l_[ Uk]) p Z(x,—y,—,uk,j)Z/aiyj
=
d

o< —dlog(oy)— Py Zx,j—‘uk’j)z

k j=1
d
o< — E .u’k]

=1
refit centers uq,..., Uk given clusters by
1
Mkj=— Z Xij
nk C,':k
recluster observations...
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Fitting a Mixture Model

clustering with K-means clustering with GMM

minimize distance maximize likelihood

d

(x| ci=k) o< _Z(Xi,j i)

=

update means with GMM
use average

update means with K-means
use average

1 1
e Xi i
Ukj=— E Xij Mk, n Z hf
k C;:k

nk ci=k

Introduction to Data Science |  Boulder Clustering | 110f19



Fitting a Mixture Model

OK, now what if

o2 0 ... 0
o2 ... 0
= 2
B ¢
0 0 0 o%

and 02,...,0% can take different values?

use same algorithm
update u, and ai with maximum likelihood estimator,

1 Z
kj= — X"'

ci=k
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Fitting a Mixture Model

Data:

X1 X2

-3.7 | -0.4
0.4 | 0.1

04 | 1.7
-04 | -1.0
-1.3 | -1.7
1.0 | 3.3
1.2 | 5.2
1.3 | 0.3
1.1 | -0.8
05 | 2.8
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Fitting a Mixture Model

pick centers and variances, iy = [—1,—1], o2 =[1,1], uy =[1,1],
o2 =[1,1]
compute (proportional) log likelihoods,

d

’
2, 2
t(xilci=k) = E log(o;) 3 E (Xij— i)/ O
=
X4 Xo k=1 k=2
37 | 04 || 38 | 21
04 | 01 || 16 | -06

0.4 -1.7 -1.2 -3.8
-04 | -1.0 -0.2 -3.0
13 | 1.7 -0.3 -6.3
1.0 3.3 -11.2 -2.6
1.2 5.2 -22.0 -9.0

1.3 0.3 -3.6 -0.3
1.1 -0.8 2.2 -1.6
0.5 2.8 -8.2 -1.7
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Fitting a Mixture Model

fit new means and variances:

Yy =[~1.3,—1.2]
0% =[3.1,04]
o =[0.9,1.8]
02 =[0.2,5.4]

compute new distances...
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Fitting a Mixture Model

Xq Xo k=1| k=2
-3.7|-04| -1.8 | -70.8
0.4 | 0.1 2.7 -1.0
04 |17 -08 -2.0
-04|-10| -03 -6.8
-13|-1.7 | -05 | -16.6
1.0 | 33 || -274 | -0.1
12 | 52 || -55.9 | -1.3
1.3 | 0.3 -4.3 -0.7
11 | -08 | -1.2 -0.6
05 | 28 | -21.3 | -0.7

No change, so clusters are final
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Fitting a Mixture Model

X2

X1
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Limitations of k-means / mixture models

k-means is fast and simple, but . ..
What if your data are discrete?

What if each data point has more than one cluster? (digits vs.
documents)

What if you don’t know the number of clusters?
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Wrapup

Clustering helps discover patterns
k-means is a simple approach

Gaussian mixture models more probabilistic foundation
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