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Discrete Distribution: Multinomial

¢ Recall the density function (N is total number of observations, x; is the
number for each cell, 6; probability of cell)

LN .

¢ Taking the log makes math easier, doesn’t change answer (monotonic)

¢ If we observe x; ... Xy, then log likelihood is
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MLE of Multinomial 6

E(§)=IogN!—Zlogx,!+Zx,-|og€,-+/1(1—29,-) (3)

I
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MLE of Multinomial 6

€(§)=IogN!—Zlogx,-!+Zx,-|og@,-+)t(1—ZB,) 3)

i

Where did this come from? Constraint that 5 must be a distribution.
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MLE of Multinomial 6
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MLE of Multinomial 6
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MLE of Multinomial 6

¢ We have system of equations
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MLE of Multinomial 6

¢ We have system of equations

X1
0, =— 5
iy (5)
(6)
XK
O =— 7
K= @)
Ze,-:1 8)
i
e So let’s substitute the first K equations into the last:
= ©
i A
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But why are we adding one?

¢ But you told us to add one while estimating multinomials!
e Difference between MLE and MAP
* mle assumes only the data distribution

° map assumes a distribution over parameters too (technically for
Laplace, Dirichlet with a; = 1)

¢ Recall that we showed Dirichlet parameter can be viewed as
Pseudocounts
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