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Roadmap

e Going from data and distributions to parameters

Mathematical aside: optimization with constraints
Poisson MLE

e Gaussian MLE

Multinomial MLE
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Why MLE?

Before: Distribution + Parameter — x

Now: x + Distribution — Parameter

(Much more realistic)

NB: Says nothing about how good a fit a distribution is
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Likelihood

e Likelihood is p(x; 8)
e We want estimate of 8 that best explains data we seen
¢ |.e., Maximum Likelihood Estimate (MLE)
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Likelihood

The likelihood function refers to the PMF (discrete) or PDF (continuous).

For discrete distributions, the likelihood of x is P(X = x).

e For continuous distributions, the likelihood of x is the density f(x).

We will often refer to likelihood rather than probability/mass/density so
that the term applies to either scenario.
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Optimizing Unconstrained Functions

Suppose we wanted to optimize
{=x?—2x42 1)
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Optimizing Unconstrained Functions
Suppose we wanted to optimize

{=x*—2x+2 (1) — =—2x-2 )
X
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Optimizing Unconstrained Functions

%—O 3

ox ®)
—2x—2=0 (4)
x=—1 (5)

(Should also check that second derivative is negative)
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Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions f(xy,...x,) and g(xy,...x,), the critical points of f
restricted to the set g = 0 are solutions to equations:

of ag
3—)(/()(1, Xn) _’la_x,-(x“ Xp) Vi
9(xy,...x,) =0

This is n+ 1 equations in the n+ 1 variables xi,...X,, A.
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives

ot 1 [y dg
— = /= = =2
ox 2V x 0Ox 0
al 1 0

LY _g:1o

oy 2\y ay
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives

ot 1 [y dg
— = /= = =2
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¢ Create new systems of equations
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives

ot 1 [y dg
— = /= = =2
ox 2V x 0Ox 0
al 1 0

LI It _g:1o

oy 2\y ay

1
=2
2V x

1
_\P:m
2\y

20x 4+ 10y = 200

¢ Create new systems of equations
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Lagrange Example

¢ Dividing the first equation by the second gives us

Z=2 (6)
X

e which means y = 2x, plugging this into the constraint equation gives:

20x+10(2x):200
x=5=>y=10
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