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Roadmap

• Going from data and distributions to parameters

• Mathematical aside: optimization with constraints

• Poisson MLE

• Gaussian MLE

• Multinomial MLE
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Why MLE?

• Before: Distribution + Parameter→ x

• Now: x + Distribution→ Parameter

• (Much more realistic)

• NB: Says nothing about how good a fit a distribution is
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Likelihood

• Likelihood is p(x;θ )

• We want estimate of θ that best explains data we seen

• I.e., Maximum Likelihood Estimate (MLE)
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Likelihood

• The likelihood function refers to the PMF (discrete) or PDF (continuous).

• For discrete distributions, the likelihood of x is P(X = x).

• For continuous distributions, the likelihood of x is the density f (x).

• We will often refer to likelihood rather than probability/mass/density so
that the term applies to either scenario.
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Optimizing Unconstrained Functions

Suppose we wanted to optimize

`= x2−2x +2 (1)
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Optimizing Unconstrained Functions

Suppose we wanted to optimize

`= x2−2x +2 (1)
∂ `

∂ x
=−2x −2 (2)
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Optimizing Unconstrained Functions

∂ `

∂ x
=0 (3)

−2x −2=0 (4)

x =−1 (5)

(Should also check that second derivative is negative)
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Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions f (x1, . . .xn) and g(x1, . . .xn), the critical points of f
restricted to the set g = 0 are solutions to equations:

∂ f

∂ xi
(x1, . . .xn) =λ

∂ g

∂ xi
(x1, . . .xn) ∀i

g(x1, . . .xn) = 0

This is n+1 equations in the n+1 variables x1, . . .xn,λ.
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Lagrange Example

Maximize `(x ,y) =
p

xy subject to the constraint 20x +10y = 200.

• Compute derivatives
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• Create new systems of equations
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Lagrange Example

• Dividing the first equation by the second gives us

y

x
= 2 (6)

• which means y = 2x , plugging this into the constraint equation gives:

20x +10(2x) = 200

x = 5⇒ y = 10
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