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Multinomial distribution

¢ Recall: the binomial distribution is the number of successes from
multiple Bernoulli success/fail events

* The multinomial distribution is the number of different outcomes from
multiple categorical events
o Itis a generalization of the binomial distribution to more than two

possible outcomes
o As with the binomial distribution, each categorical event is assumed

to be independent
o Bernoulli : binomial :: categorical : multinomial
e Examples:

o The number of times each face of a die turned up after 50 rolls
o The number of times each suit is drawn from a deck of cards after 10

draws
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Multinomial distribution

* Notation: let X be a vector of length K, where X is a random variable
that describes the number of times that the kth value was the outcome
out of N categorical trials.

o The possible values of each X, are integers from 0 to N
o All X, values must sum to N: 22(:1 Xe=N

e Example: if we roll a die 10 times, suppose it Xy =1
comes up with the following values: Xo =0
X;=3

X =<1,0,3,2,1,3> X, =2
X5 =1

XG — 3

* The multinomial distribution is a joint distribution over multiple random
variables: P(Xq, Xz, ..., Xk)
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Multinomial distribution

* Suppose we roll a die 3 times. There are 216 (6°) possible outcomes:

P(111) =P(1)P(1)P(1) =0.00463
P(112) =P(1)P(1)P(2) =0.00463
P(113) =P(1)P(1)P(3) =0.00463
P(114) =P(1)P(1)P(4) =0.00463
P(115) =P(1)P(1)P(5) =0.00463
P(116) =P(1)P(1)P(6) =0.00463

P(66.5.) = P(6)P(6)P(5) ;0.00463
P(666) = P(6)P(6)P(6) =0.00463

e What is the probability of a particular vector of counts after 3 rolls?
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Multinomial distribution

* What is the probability of a particular vector of counts after 3 rolls?
e Example 1: X =< 0,1,0,0,2,0 >
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Multinomial distribution

* What is the probability of a particular vector of counts after 3 rolls?
e Example 1: X =< 0,1,0,0,2,0 >
° P()?) = P(255) + P(525) + P(552) = 0.01389
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Multinomial distribution

* What is the probability of a particular vector of counts after 3 rolls?
e Example 1: X =< 0,1,0,0,2,0 >

o P()?) = P(255) + P(525) + P(552) = 0.01389
* Example 2: X =<0,0,1,1,1,0>
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Multinomial distribution

* What is the probability of a particular vector of counts after 3 rolls?
e Example 1: X =< 0,1,0,0,2,0 >
o P()?) = P(255) + P(525) + P(552) = 0.01389
* Example 2: X =<0,0,1,1,1,0>
o P(7() = P(345) + P(354) + P(435) + P(453) + P(534) + P(543) =
0.02778
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Multinomial distribution

¢ The probability mass function for the multinomial distribution is:

N! K
W)= —— []o
———

Generalization of
binomial coefficient

¢ Like categorical distribution, multinomial has a K-length parameter
vector 6 encoding the probability of each outcome.

¢ Like binomial, the multinomial distribution has a additional parameter N,
which is the number of events.
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Multinomial distribution: summary

e Categorical distribution is multinomial when N =1.
e Sampling from a multinomial: same code repeated N times.

o Remember that each categorical trial is independent.
o Question: Does this mean the count values (i.e., each Xj, X5, etc.)
are independent?
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Multinomial distribution: summary

e Categorical distribution is multinomial when N =1.
e Sampling from a multinomial: same code repeated N times.
o Remember that each categorical trial is independent.
o Question: Does this mean the count values (i.e., each Xj, X5, etc.)
are independent?
No! If N=3 and X; =2, then X, can be no larger than 1 (must
sum to N).
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Multinomial distribution: summary

e Categorical distribution is multinomial when N =1.
e Sampling from a multinomial: same code repeated N times.

o Remember that each categorical trial is independent.
o Question: Does this mean the count values (i.e., each Xj, X5, etc.)
are independent?

No! If N=3 and X; =2, then X, can be no larger than 1 (must
sum to N).

* Remember this analogy:
o Bernoulli : binomial :: categorical : multinomial

Introduction to Data Science Algorithms | Boyd-Graber and Paul il stributions: Discrete | 70f7



