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Multinomial distribution

• Recall: the binomial distribution is the number of successes from
multiple Bernoulli success/fail events

• The multinomial distribution is the number of different outcomes from
multiple categorical events

◦ It is a generalization of the binomial distribution to more than two
possible outcomes

◦ As with the binomial distribution, each categorical event is assumed
to be independent

◦ Bernoulli : binomial :: categorical : multinomial

• Examples:

◦ The number of times each face of a die turned up after 50 rolls
◦ The number of times each suit is drawn from a deck of cards after 10

draws
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Multinomial distribution

• Notation: let ~X be a vector of length K , where Xk is a random variable
that describes the number of times that the k th value was the outcome
out of N categorical trials.

◦ The possible values of each Xk are integers from 0 to N
◦ All Xk values must sum to N:

∑K
k=1 Xk =N

• Example: if we roll a die 10 times, suppose it
comes up with the following values:

~X =< 1,0,3,2,1,3>

X1 = 1
X2 = 0
X3 = 3
X4 = 2
X5 = 1
X6 = 3

• The multinomial distribution is a joint distribution over multiple random
variables: P(X1,X2, . . . ,XK )
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Multinomial distribution

• Suppose we roll a die 3 times. There are 216 (63) possible outcomes:

P(111) = P(1)P(1)P(1) = 0.00463

P(112) = P(1)P(1)P(2) = 0.00463

P(113) = P(1)P(1)P(3) = 0.00463

P(114) = P(1)P(1)P(4) = 0.00463

P(115) = P(1)P(1)P(5) = 0.00463

P(116) = P(1)P(1)P(6) = 0.00463

. . . . . . . . .

P(665) = P(6)P(6)P(5) = 0.00463

P(666) = P(6)P(6)P(6) = 0.00463

• What is the probability of a particular vector of counts after 3 rolls?
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Multinomial distribution

• What is the probability of a particular vector of counts after 3 rolls?

• Example 1: ~X =< 0,1,0,0,2,0>

◦ P(~X) = P(255)+P(525)+P(552) = 0.01389

• Example 2: ~X =< 0,0,1,1,1,0>

◦ P(~X) = P(345)+P(354)+P(435)+P(453)+P(534)+P(543) =
0.02778
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Multinomial distribution

• The probability mass function for the multinomial distribution is:

f (~x) =
N!
∏K

k=1 xk !
︸ ︷︷ ︸

Generalization of
binomial coefficient

K
∏

k=1

θ xk
k

• Like categorical distribution, multinomial has a K -length parameter
vector ~θ encoding the probability of each outcome.

• Like binomial, the multinomial distribution has a additional parameter N,
which is the number of events.
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Multinomial distribution: summary

• Categorical distribution is multinomial when N = 1.

• Sampling from a multinomial: same code repeated N times.

◦ Remember that each categorical trial is independent.
◦ Question: Does this mean the count values (i.e., each X1, X2, etc.)

are independent?

• No! If N = 3 and X1 = 2, then X2 can be no larger than 1 (must
sum to N).

• Remember this analogy:

◦ Bernoulli : binomial :: categorical : multinomial
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