JORDAN BOYD-GRABER

QUESTIONING
ARTIFICIAL
INTELLIGENCE

UNIVERSITY OF MARYLAND

6
Watson on Jeopardy!:

Unquestioned Answers from 1BM’s tour de force

It’s been nearly a decade since IBM Watson crushed two puny humans on Jeop-
ardy! Some people took that to mean that computers were definitively better
than humans at trivia. But that isn’t the complete answer—this chapter, inspired
by Jeopardy!’s gimmick of responding to answers to questions, questions some
of the “answers” that emerged from IBM’s tour de force.

We begin the “modern” age of computer question answering and the rise
of A1 with Watson: an 1BM-built A1 that could play the American game show
Jeopardy!

It’s been over a decade since Watson appeared on TV, but it was revolution-
ary. This chapter will talk about how it changed my life, how it changed the
way the public thought about a1, and how its technology paved the way for
“modern” A1 as exemplified by rLMs like GPT.

But this isn’t a love letter to Watson. For all the fame and glory it won,
the Watson story isn’t without problems. Indeed, this chapter will make the
argument that the game was subtly rigged in a way that set back research on
AL

6.1 Why 1BM Chose Jeopardy! for a Grand Challenge

Watson is part of a long history of “grand challenge” projects meant to symbol-
ize progress on Al 1BM (International Business Machines) is a New York-based
technology company that for much of the twentieth century was synonymous
with computing.

Grand Challenges

It had previously wowed the world by creating “Deep Blue”, a chess-playing
computer that defeated Gary Kasparov in 1997, widely considered the best
chess player of the time (Hsu, 2002). Other a1 grand challenges include those

46 QUESTIONING ARTIFICIAL INTELLIGENCE

issued by funding agencies like the United States’ Defense Advance Projecects
Research Administration (DARPA) to build autonomous cars that can drive a
hundred miles in the Mojave, although the best team just managed over seven
miles (Patterson, 2005). Google/DeepMind had a similar ambition when they
created AlphaGo, which like DeepBlue defeated Lee Sedol in 2016, widely
considered the best Go player of the time (Koch, 2016).

The goal of these projects is not just to advance technology but to create a
big enouch splash that people change how they think about technology.

It’s hard to imagine an alternate world where these grand challenges did not
happen, but I don’t think it’s exaggeration to say that these grand challenges
did indeed change the world. After his defeat, Gary Kasparov took a “if you
can’t beat them, join them” approach and then began arguing for Centaur
Chess: humans and computers playing chess together (this works for question
answering too, as we discuss in Chapter 10.20). Likewise, the best Go players
became more creative and novel moves by incorporating computer-like play
into their play style ?. And two decades after DARPA’s autonomous grand
challenge, we now have self-driving cars on the street in several Us cities.

So what made 1BM pick Jeopardy! for its grand challenge?

What Jeopardy! is and How it Works

Jeopardy! is a gameshow created by Merv Griffin that debuted in 1967 (Griffin,
2003). Its big gimmick is that the player responses are given in the form of a
question in reaction to infamous human cheating scandals (we discuss how
computers “cheat” in Chapter 10). For example, the clue

The CAPTCHA test against spam & robot pro-

grams is called the ‘reverse’ test named for this

British code breaker

would have response Who is Alan Turing. The clues are arranged in a grid:

columns represent categories and rows represent difficulty, with the more
difficult questions being worth more.

There are three players who stand side by side behind podiums. When a
clue is read, any of the three players can “buzz in” to say that they want to
give a response. If they give the correct response, they then have “control of
the board” and can select the next clue.

One advantage of controlling the board is that some questions are called
“Daily Doubles” which allow the player to potentially double their score: a
player can wager any part of their score, and if they get it right they get that
ammount added to their score (but a wrong response will subtract it from their
score).

How Watson changed my life

I remember when I first heard rumblings of Watson. Because I had a foot

in both the A1 and trivia communities, I heard two different stories. I heard

WATSON ON JEOPARDY!: UNQUESTIONED ANSWERS FROM IBM’S TOUR DE FORCE 47

rumors of amazing work in parsing and semantic role labeling happening from
researchers who ventured north to Westchester county in New York (I was
doing my PhD in New Jersey). From the trivia community, I heard of some
people who were being paid by 1BM to play trivia games but that they couldn’t
say anything more.

I was very sceptical. By the time that Watson came to fruition, I had moved
to the University of Maryland. Then, my scepticism turned to jealousy. I
watched, along with the rest of the world, one of the greatest achievements
of A1 unfold in front of me. What was I doing wasting my time working on
language models if this was also legitimate research?

Let me be clear that the technical triumphs are indisputable (and, in my
opinion, under-appreciated). From the work on wagering to synthesizing
multiple information sources, Watson (Ferrucci et al., 2010) was from top to
bottom a top-notch well-oiled machine. And it computed all of this in real

time—something that wasn’t strictly necessary but still impressive.

6.2 How Watson Works

While “neural” question answering (which we’ll discuss in future chapter)
is the big thing these days, Watson came of age in the statistical age. To
understand some of how Watson works, its helpful to review some of the work
that came before Watson that helped inspire it.

Rule-based Question Answering

Preceeding the statistical age of QA was the rule-based age: systems that were
impressive on individual questions about baseball or geology but that faltered
as soon as it saw a question that was unexpected in terms of the domain,
they’d fail miserably.

One of the guiding principles of the statistical age was “the unreasonable
effectiveness of big data”, and this required scaling approaches to web-scale
data. The first things that people tried was scaling up the “good, old-fashioned”
approaches that defined the rule-based systems. Probably the most prominent
system in this category is Start from Boris Katz at m1T. This system first
launched in 1993. This, like many of the systems in this era, take an approach
that’s somewhat similar to to the old-fashioned Al approaches: parse the query

with a and look it up in a knowledge base. For example, given the question:!

Who directed Gone with the Wind?

Becomes the lookup

! This is an impressive/complicated question
because David O. Selznick removed the first
director (George Cukor) to replace him with
Victor Fleming (the credited director), but
Sam Wood had to fill in when Fleming col-

(get "imdb-movie" "Gone with the Wind (1939)" "DIRECTOR" Japsed onset

=> ("George Cukor" "Victor Fleming" "Sam Wood") (Katz
et al., 2002).

Some of these can be looked up directly in datasets, but START further builds
on the systems like LUNAR and BASEBALL (Chapter 4.1). While those systems

48 QUESTIONING ARTIFICIAL INTELLIGENCE

LUNAR and BASEBALL also need to turn the raw text of questions into a
structured representation, the difference of sTART is that is to deal with the
messiness of Internet text. And its ability to search the Internet to find answers
is clearly a huge influence on the subject of this chapter— Watson—and later

Dense Passage Retrieval later (Chapter 9.1).

Transforming Questions to find the Answer

I n the next chapters about neural language models, we will discuss how new
models transform questions into numbers (vectors) to find or generate the
answer. But before we get there, it is useful to talk about how we can transform
questions into text that can better find the answer. We begin with the Question
Answering using Statistical Models (Radev et al., 2001, QasMm).

One way of thinking about question answering is that it’s a translation
problem: questions are asked in one language but the answers are found in
another language. Qasm’s approach is to explicitly “undo” the process to find
the correct response given an input clue.

In Chapter 10.1, we’ll talk about the cheating scandal around the American
game show 21, where Charles van Doren got the answers in advance. Part of
the mythology of Jeopardy! is that Merv Griffen said, why don’t we just give
them the answers! So you have clues like

During WWII this computer scientist & code

breaker converted his money into silver &

buried it; he never found his buried treasure.

The correct response, which is phrased as a question, is “Who is Alan Turing?”
In other words, the central conceit of Jeopardy! is that it converts questions
into answers (and then the contestants need to give a response to that answer
in the form of a question).

What gasm is doing is doing the reverse: it has a model that tries to turn
questions into the search string that could find the answer to the question
(we’ll see modern versions of this when we talk about multihop question
answering in Chapter 7). QasM can apply plenty of transformations: swapping
words, deleting words, ignoring words (e.g., if you have Cleveland, Ohio and
ignore Ohio, you’ll find more things about US president Grover Cleveland),
etc.

In the end, you have a model that creates specialized queries from the
original question. Later on, when we talk about dense passage retrieval, those
systems are doing something similar, except they’re generating the query in
a continuous vector space (Chapter 9.1). Doing it with real words like QAsm
is more interpretable: a human could understand what’s going on, while a
vector query is inscrutable it seems to work better.

But how does this allow Watson to answer questions? When a question

comes in, Watson searches over previous Jeopardy! questions, Wikipedia,

WATSON ON JEOPARDY!Z UNQUESTIONED ANSWERS FROM IBM’S TOUR DE FORCE

articles, and a select subset of the Internet to find evidence that can answer
the question.

Buzzing is important for Humans and Computers

Let’s break this into two phases: guessing and buzzing. A guess is its best
guess of what the answer could be: literally one of thousands of possible
answers. A buzz is a binary decision of whether to trust whether this particular
guess is correct or not.

Let’s begin with an easy case: let’s say you get a clue that’s nearly identical
to an existing clue:

Walk like a duck

Has appeared four times as a clue on Jeopardy!: 1987, 1996, 2001, and 2010. In
addition to the above category, this clue also appeared under categories like
six-letter words and “WA”. The guess process looks to see if it has ever seen
this exactly clue before, it has, so it produces the guess waddle.

The buzzer needs to decide if it should trust this guess. It has a number that
it associates with seeing the exact clue before; let’s arbitrarily say that it’s 3.0.
It then compares that score with its threshold on when to buzz. Again, let’s
arbitrarily say that the threshold is 1.0. 3.0 is larger than 1.0, so it buzzes in with
that guess (We’ll talk more about how to set these numbers not-so-arbitrarily
in Section 6.2).

But Jeopardy! doesn’t have one kind of clue. There are many different
types of question, and sometimes you get a clue from the category about what
kind of question you will need to answer. Let’s start with “potent potable
rhyme time”: from the name of the category, you know that both words in the
response have to rhyme with each other and that it will have something to do
with alchohol. So, to answer the clue:

Rice wine for the guy who rides a racehorse

, you are essentially doing a constrained search: you can find individual pieces
that fit the clues (e.g., rewriting synonyms to discover things like makkoli,
brem, tapai, etc. for “rice wine” and “cowboy” and “knight” for people who
ride a horse). So your guesser would generate lots of different possibilities, but
from past experience your buzzer would give a very low score to anything that
didn’t have two words. For example, if the category is “rhyme time” but there’s
only one word in the answer, the score goes down by 5.0, which balances
out even if the buzzer likes sake by itself as a response. This is in essence a

constrained search: you search for individual components that fit with the
clue until you get two things that match the clue and then rhyme with each

other.

49

50 QUESTIONING ARTIFICIAL INTELLIGENCE

Using Features

Now how does the buzzer know to use this information? There are many little
pieces that could go into thinking that a guess is good or not. These pieces of
evidences are called features. While features aren’t always active, when they
are, they provide evidence of whether a guess is good. For example, you could
have a feature (and Watson probably did) for when a category has a “quote”
in it: this means that the text inside the quote should appear in the answer.

E.g., if you have a category “Ten”-letter words, then the clue

Patrick Roy and Hope Solo played this position

would have many possible answers that might score highly if you didn’t take
the category into account: e.g., goalie. But the category has two pieces of
information: that the answer should be ten letters long: goalie fails that but
goalkeeper does. However, the additional quoted part of the category tells the
buzzer that it should give a low score to any guess that doesn’t have “ten” in
it.

In a computer programming language, this could simply be an if statement:
if ASCII character 34 is in this string, return 1. But just knowing that there’s a
quote in the category does’t tell you which clues to favor. You would need to
make the the feature more specific.

Let’s go to a question that I got while I was on Jeopardy! And this shows
that these aren’t just a category-specific phenomenon...this also apply to
individual clues as well. In a quite normal category about geography, this clue

came up:

“G.17 hope you know that 0 degrees latitude &

180 degrees longitude is just east of this group,

part of Kiribati

Notice that “G.I” is in quotation marks. This is a signal that the correct response
will start with G.I, in this case the correct response is “Gilbert? Islands”. So
perhaps we need to have multiple features to capture whether our answer is
consistent with this clue. To be clear, we don’t know exactly what features
Watson used, but it could look something like this:

+ You might have one feature to indicate that there is a quotation mark in
the clue.

+ You could have another feature to show that the quote matches the candidate
guess.

« Perhaps you have another feature that indicates whether the feature matches
a multiword guess.

What made Watson such a tour de force is that humans had to come up with
each of these features. This is not a one and done process. If you’re building a
system like this, you should look at things the system is still getting wrong and
add a new feature to correct the issue. This is the same process that Watson

? Named of course for Johnny Gilbert, “the
voice of Jeopardy!”. Actually not, it’s far
more confusing than that: it was named
by a German admiral-Adam Johann von
Krusenstern—who led the first Russian cir-
cumnavigation of the globe. Krusenstern
recognized that the British Captain Thomas
Gilbert had described each of the islands in-
dividually and applied the the name to the
group of islands.

WATSON ON JEOPARDY!Z UNQUESTIONED ANSWERS FROM IBM’S TOUR DE FORCE

used to build their statistical system. Maybe the system got confused when
somebody has a quote from literature and you need to make sure that doesn’t
get counted or add a new feature to handle that case. It’s very rare to get the
features right the first time around.

The statistical approach has some advantages over the neural approach
we’ll see in the next chapter: it is easy to understand why a system is doing
what it is. And it’s easy to fix problems as they pop up.

In other cases, the constraint is that the correct answer starts with a partic-
ular letter.

The category that I feared the most was anagrams: where you need to
rearrange the letters in the clue to get to the answer. This is actually easier for
a computer than a human!

Each of these can have different approaches that can generate guesses that
might be the correct answer. And you might think that this is all encoded in
the category. Not so!

And for “normal” clues, this looks a lot like the reformulations that we
saw in QASM: 400th anniversary of 1898 gets rewritten to 27th May 1498,
India gets transformed into Kappad, and then you can find something with
the correct response: Vasco de Gama.

So the first phase of the Watson pipeline is to—in parallel—generate all
sorts of guesses based on different interpretations of the question. Some try
to solve anagrams, others look for rhymes, others run an IR query like the
Start system we talked about before, others are doing transformations like the
QASM approach we talked about before.

And sometimes the approaches need to take a recursive approach, combin-
ing different subsystems to get to the right answer.

Logistic Regression and Gradient Descent

From this you have dozens of possible guesses. How do you know which—if
any—to select? This all gets fed into a logistic regression problem. This can
take into account how consistent the evidence matches the clue, how popular
the response is, and it can even take into account things like Jeopardy!’s love
of puns.

In the examples above, we assumed that we knew what the weights were
for each of our features. For the moment, let’s continue that assumption...but
we’ll try to improve them so that we get more buzzes right and fewer wrong.
This will require a bit of math, so if you just want to jump ahead to the big
picture (e.g., if you already know what sGp for logistic regression looks like),
go ahead to Section 6.2.

So what does it mean to get more buzzes right? First, we need to define a
little terminology: we need to consider the correct examples X and all the
wrong examples X¢. We want all of the correct examples to have scores more

than the threshold and all of the incorrect examples to have scores less than

51

52 QUESTIONING ARTIFICIAL INTELLIGENCE

the threshold. Let’s call the threshold b, and then we need to sum up all of the
non-zero features of an example to compute the score of an example i:

score(x;) = Zw]-xi,]-. (6.1)
i

In other words, we take every feature, multiply it by the weight associated
with it (e.g., x; ; might be does this clue have a category with a quote in it).
We write this as a multiplication and not as just adding the feature weights
directly because sometimes our features won'’t be binary. And this should look
familliar: it looks a lot like the dot product that we first saw in the chapter
on information retrieval (Chapter 4), where we compute the similarity of two
examples by multiplying the TF-IDF scores of two documents’ words.

And this is a good segue to why we write this as a dot product rather
than as a sum of all of the relevant feature weights. If all of the features of
an example x; ; are binary, then you take the non-zero elements and add up
the weights (since one times the weight just gives you the feature weights).
But another very good feature might be how well the guess matches the clue
(e.g., dot product between TF-IDF scores). So a way to generalize both the
binary features and continuous features is to take the dot product of a vector
representing all of the features and all of the weights to compute a score for
the guess. The higher the score, the better the guess and the more likely the
system will answer.

But this doesn’t answer the question of how we can learn what the weights
should be. We need to look at the cases where the system has generated a lot
of guesses and seen which of them are correct or not. From this, you can learn
that when a letter is in quotes and it matches, that’s a good sign for getting a
guess right. More concretely we want the score (Equation 6.1) to be high for
right guesses and low for wrong ones, and if it’s not, we need to adjust the
scores by changing the weights w.

One missing piece of the explanation is how to turn our weights into
probabilities. For that, we are going to use the logistic function. This is a
function that can take any real number as an input and turn it into a probability
between zero and one. When the input is zero, it provides a probability is 0.5,
and when the input goes to positive infinity, the probability approaches one;
likewise, when the input goes to negative infinity, the probability approaches
zero. For convenience, we will call this function ¢(x), because some people
call this the sigmoid function.

For this, we are going to need an objective function: a mathematical expres-
sion that tells us how far we are from our goal. In this case our objective is to
make the probability saying we should buzz—computed from our weights—for
incorrect buzzes be as low as possible. So this means that we’re going to

transform our weights into a probability 7r; between zero and one that gets

WATSON ON JEOPARDY!: UNQUESTIONED ANSWERS FROM IBM’S TOUR DE FORCE 53

big when the weights pass the threshold:

1

14+ exp— (Ej wix;;+ b) .
(6.2)

Since we only want to buzz when we’re right, then we want 7t; to be small

=0 (Z wjxi,]- — b) = p(buzz | x) =

]

(close to zero) whenever the buzz is wrong and big when the buzz is right
(close to one). Alternatively, we could also say we want 1 — 71; to be big when
the buzz is wrong, since this means that 77; is as close to zero. This alternate
formulation is actually what we want since we will want to optimize a single
function going in the same direction. Because we care about all examples,
you would normally multiply the probability of joint events together, but this
leads to a very small number (since probabilities are less than one), so for

mathematical convenience we take the log:

£'== Y logm + Y logl—m;. (6.3)
ieX; z‘eXf
— —_—————
How right are we How wrong are we
So this overall expression (the log probability) tells us how good of a job our
features are doing in telling us when to buzz.

Later in the book, objective functions like this will be called a loss function,
so to be consistent with that, we will think about how to minimize our mistakes,
so what we will do now (somewhat confusingly) is to minimize the negative
of £, which we will call £:

L==—Y logm—) logl—m;. (6.4)
ie X, ieXf

Just to recap: Equation 6.2 is the probability of the model saying we should
buzz on example i, Equation 6.3 combines all of those together to see how
close we are to being right, and then Equation 6.4 flips it around so that the
large it is, the wronger we are... we want to minimize that expression.

If you remember high school calculus, this is an optimization problem: you
can compute the derivative (gradient, actually) of each of each of the variables
you have control over—the feature weights w—and then adjust those weights

to decrease the loss function represented by £ (Equation 6.4). When you did

Figure 6.1: This function is called the sigmoid
function because the way it transforms all
inputs into values makes it look like an “S”
shape, with 0 outputs to the left, increasing in
the middle (an input of 0 right at the threshold
gives an output of 0.5) and 1 outputs to the
right.

54 QUESTIONING ARTIFICIAL INTELLIGENCE

this in high school calculus, you could probably solve the equation for when
the derivative was zero, set the variable to make the derivative zero, and then
you’re done. But that’s not possible here, so we need to take little adjustments
to w to push £ down again and again.

An intuitive way of thinking about this is that the shape of £ represents a
hill. Where you stand on the hill is represented by how you’ve set w: each
dimension represents one dimension of this vector.® In two dimensions, one
dimension is how far north-south you are and one dimension is how far
east-west you are: and you’re trying to get to the lowest valley you can. The
catch is that you can’t really see what the whole landscape looks like; it’s so
foggy you can only see right around where you are. The intuition in this case
is to walk “downbhill”, and this is exactly what the gradient of £ gives you.

Now the problem is that computing £ over your entire dataset is hard: you
have to go over every single question in the Jeopardy! training set to compute
its contribution to the gradient. The way that I like to think about it is that
each example is a person you can ask “how do I go downhill”. While you
could ask lots of different people, if you ask literally everyone, that’s probably
going to be overkill. You can probably get a good sense of the direction by just
asking a handful of example of which way you should go.

In the lingo, the sample of examples that you ask for the direction is the
minibatch, and this overall process of asking a few (or even one) example for
a direction is called stochastic gradient descent (Bottou, 2004).

Given that the math for the derivation is everywhere, I will skip it here
(you can take a look at Chapter 5 of Speech and Language Processing by
Jurafsky and Martin, which I often use in my classes and thus have adopted

their notation), but it is so intuitive that if you look at it, it just “feels right”.

For a minibatch of size one, if you ask it which way you should go, it tells you
to update* your weight w; to be:
oL

Id
+ A; ZU/(O) A (7'[1' - y,) Xjj. (6.5)
i ———

w{new) _ w(old)

]]
error

The most important part of the equation is the error: how far off your prediction
for example j is. Remember that the true outcome y; is binary (either you
should have buzzed—y; = 1.0—or you shouldn’t have—y; = 0.0), but that the
prediction 77; is a probability and thus ranges between 0.0 and 1.0. The more
right you are—the closer you are to y;—the less the weights change. In other
words, if you got this example exactly right, nothing changes at all. But the
bigger your error is, the more you change. Exactly how much is controlled
by the step size parameter A, and the direction of the change depends on the
sign of the error. If the error was positive, your prediction was too low, so you
should increase all of the feature weights that caused you to say you should
have buzzed when you didn’t. If the error was negative, your prediction was
too high, and so you slightly decrease all of the feature weights that caused
you to get it wrong.

* The threshold b is also an additional dimen-
sion you need to optimize, but we’ll gloss
over this for now...you can always fudge it
be imagining it an additional dimension of w
that’s always active for every example.

*Because we're doing stochastic descent,
we subtract the gradient from the current
weight...if we were trying to make the objec-
tive function as large as possible, we’'d add it
to the current weights.

WATSON ON JEOPARDY!: UNQUESTIONED ANSWERS FROM IBM’S TOUR DE FORCE 55

The other input to the update is how much of this feature the example has:
xjj. To make sure your gradients don’t get too big or too small, in practice we
often standardize the feature weights so that they have mean zero and unit
variance. However, because this chapter is trying explain how these things
work (and we’ll work through an example next), we won’t do that to make
the math more straightforward.

So let’s see how this would work in a more real-world example. Let’s say

that you have a clue

Its largest airport is named for a WWII hero.
Its second largest, for a WWII battle.

that Watson famously got wrong as a final jeopardy! when it answered the
famous American city Toronto. So in this case our buzzer input® is whether
we should buzz on this clue with the response Toronto, for which we get a 7t;.
For the sake of concreteness, let’s say 71; is 0.4...it’s not high, but it should
be zero because Midway and O’Hare airports are actually in the great city of
Chicago. Now this is too high, so something went wrong with our features.
Let’s see what features were on and what their current weights in Table 6.1.

Feature Weight w; x;
IR Score 2 0.1
Toronto compatability with Category 1 0.2
Knowledge Base (# Airports in Toronto) 0.1 2
Previous responses (Toronto) 0.005 40
Bias -0.8

These are reasonable features: the IR score encodes how similar this is to
questions that you’ve seen before; the category feature encodes whether the
answer is compatable with the category “us cities” (and while you imagine
that it isn’t great, you could imagine substituting “American” for “us”, which
would make Toronto a lot more plausible); the knowledge base feature checks
to see how many airports are in Toronto; and the final feature checks to see if
Toronto has been an answer before (you might imagine that more frequent
answers in the past will appear again).

There are lots of other features that we’re not seeing because they’re zero,
e.g., the feature that checks to see if there’s a quotation mark in the category
doesn’t see one, so it’s zero and we can safely ignore it along with every other
feature that didn’t fire.® And this makes sense: the features that aren’t on for
this feature had nothing to do with the mistake, so they shouldn’t be punished

or rewarded.

* In reality, the calculus for Final Jeopardy!
is a little different because it makes sense to
provide some answer no matter what, you
don’t really buzz in. However, you still want
the best answer to have the highest probabil-
ity, so we can still work through this example.
And indeed, given the debugging output Wat-
sonwasn’t very confident in its wrong output,
so it probably wouldn’t have “buzzed in” dur-
ing normal play, suggesting that everything

TRSIVE IR e pelsic 8V ol APl
LR ARSI LIRSS SRR 64

¢ Lest there be any doubt, I am making up
these weights and features for a simple ex-
ample... Watson had many more and better
features. Most unbelievably, the first four
features are non-zero for this example and
the rest are zero. Finally, you normally don’t
have feature weights with such round num-
bers, but it makes the example cleaner.

56 QUESTIONING ARTIFICIAL INTELLIGENCE

First, lets see how these features translate into a probability:

=0 201+ 1-02 +0.1-2+0.005-40 — 0.8 (6.6)
S Y S N —
IR Category KB Prev bias
=0 (02+02402+02—08) =0 (0.0) =05 (6.7)

From Equation 6.5, the error is 0.5—7t; should have been zero, but it was

0.5—and if we assume that our step size’ is 1.0, we can now write the overall

update
w(new) _ w(old) _ /\Vw,bﬁ (6.8)
L 2 0.5-0.1 1.95
Bw1
1 9L 1 0.5-0.2 0.75
W)
=101|—-A 5’7@ =101|-10|05-2|=| —09
0.005 % 0.005 0.5 - 40 —19.995
—0.8 % —0.8 05-1 ~13

This shows the dangers of having unbalanced feature weights and too large
step sizes. This change is overall too big; you want to be taking little steps
on your objective function, not taking huge leaps—you might jump over the
“right answer” in front of you and not fix the real problem in this example:
that Toronto is inconsistent with the category “us cities”.

Feature Engineering

However, these updates can only update the features that you have. They

cannot add new features nor can they fix problems intrinsic in the features.

When you’re starting out building a system like this, you usually don’t have
very many features. But as you go through the process of testing your initial
system, you’ll see lots things that your system gets wrong but shouldn’t: your
system has all of the evidence it needs to do what it needs, but cannot actually
get there.

Let’s focus on the Toronto question a little bit more. We already talked
about how the feature itself might need some debugging (e.g., making sure
that “us” doesn’t expand to cover all of the American continent), but how
could we add additional features that could handle this kind of phenomena
better?

In a 2010 Tournament of Champions game, there was a category with the

CELEBRATIONS OF THE MONTH
D-Day anniversary and Magna Carta day

When the category was revealed, the host Alex Trebek said “you have to name

first clue:

the month”, but Watson didn’t get that hint. In a presentation from 18BMm, they
showed that Watson got that clue wrong (Figure 6.2).

7 In practice, this would be a really bad step
size—it’s way too large, you're likely to jump
over the valley in the objective function
you’re looking for—but we’ll go with this be-
cause it makes the math easier.

WATSON ON jEOPARDY!Z UNQUESTIONED ANSWERS FROM IBM’S TOUR DE FORCE 57

Clue Type Watson's Answer Correct Answer
D-DAY ANNIVERSARY & MAGNA day

CARTA DAY

NATIONAL PHILANTHROPY DAY & | day

ALL SOULS' DAY

NATIONAL TEACHER DAY & Day/mo
KENTUCKY DERBY DAY
ADMINISTRATIVE PROFESSIONALS | day / month(.6) -

DAY & NATIONAL CPAS GOOF-OFF

DAY

NATIONAL MAGIC DAY & NEVADA day / month(.8)
ADMISSION DAY

Something that is particularly unique to Jeopardy! and not to the other QA
settings we’'ve looked at is that the category (they text that appears atop the
column a clue appears in) is a huge constraint on what the correct responses
are. A large part of the Jeopardy! buzzer is figuring out the “lexical answer
type”: what kind of thing can the answer be and only buzzing in on the things
that are consistent with that type. Part of this is is looking at clues in the
clue. This chapter has used a lot of example clues like “this woman” (Sue
Grafton), “this code breaker” (Turing), “this position” (goaltender), or “this
group” (Gilbert Islands). These are hints about what kind of response is being
sought. And lest you think this is an artifice of the skilled writers of Jeopardy!,
this also appears in more “natural” questions like those people ask Google
(Chapter 8.5).

And part of what made Watson a good Jeopardy! Player is that it would
learn as it explored the category. After getting a couple of months wrong,
Watson can learn that all of the answers should be a month. While we don’t
know for sure how this was implemented in detail, we can imagine that there
is a feature that suggests whether the clue is consistent with an answer type
of “day” or “month” (e.g., this clue is consistent with a “month” as an answer,
and June is a month). And information from the current column could also be
included in this, either directly in the computation of the feature or directly
encoding something like “given the guess April, how many of the previous
responses in the category are consistent with that type”.

One thing that made Watson particularly groundbreaking was that it not
just computed raw accuracy but also compared against human performance.
This chart showed how Watson progressed in different iterations of the system,
inching up to the cloud of Jeopardy! champions. Ken Jennings is in red there,
still clearly dominating even the final version of Watson. This comparison
is even more important today (Chapter 10) as people claim that a1s have
super-human, but the lessons of Watson can help inform how we we can judge
whether these judgements are fair and reasonable. So was the Watson match
“the real deal”?

Figure 6.2: Slide from 1BM Watson on how a
feature to predict the answer type as it works
it way through a category’s column can im-
prove its ability to buzz in correctly. (Figure
Credit: 1BM)

58 QUESTIONING ARTIFICIAL INTELLIGENCE

6.3 This Game is Rigged, I Tell Ya!

The nominal success of Watson has been well documented (not least by 18BM
itself, who rightly celebrated the great technical achievements and the great
show they put on); however, things were not perfect...the game was rigged.
It’s useful to go over the lifecycle of an entire question: how it was written, how
it’s communicated, how players answer, and how the game unfolds afterward.
At every stage, there’s a slight benefit to the computer, which taken together
makes this an unfair competition.

This is a problem! First, it’s a problem scientifically because we want to
have fair comparisons of human vs. computer intelligence. More importantly,
I want to have my turn having my question answering robots sit opposite
against trivia whizzes (Chapter 12), and I can’t do that if everybody thinks
that Watson’s spin on Jeopardy! settled the issue (and it hasn’t).

But first, in case you don’t know how Jeopardy! works, we’ll review that.
However, if you’ve calculated a Coryat score before, you can go ahead and

skip ahead to Section 6.3.

The Pool of Questions

Part of the agreement between Jeopardy! and 1BM was that the competition
would take place on normal, written questions. In the media coverage of the
competition, this focused on avoiding video and picture daily doubles (fairly
reasonable, but we’ll discuss how multimedia questions might be more fun in
Chapter 7.3). However, this causes two problems: the questions are too easy
and do not necessarily challenge computers.

So what makes up “normal” questions? Every game of Jeopardy! has ques-
tions that range in difficulty. Because it’s a television show, many questions
are easy enough that the average viewer at home can get them. Moreover, the
humans on the stage with Watson are not normal contestants. Ken Jennings
is certifiably the greatest of all time (Low, 2020, GoAT) Jeopardy! player, and
Brad Rutter isn’t bad himself.

The average “normal” Jeopardy! contestant, including not so great players
like yours truly, know a large majority of the clues. For top players like Brad
and Ken, they know—with a handful of exceptions-all the clues. In a one-on-
one fight with normal clues, Ken and Brad would be fighting over every clue:
it would come down to who could buzz first.

This isn’t fun to play. Nor is it fun to watch. This is why Jeopardy!s
tournament of champions is played on much more difficult® clues (Harris, 2006).
Nonetheless, this is the battlefield where Watson won: “normal” questions that

didn’t challenge the human players. Instead, it all came down to the buzzer.

¢ The difficulty ratchet isn’t one way; all

“special” matches use designated questions:
“Celebrity Jeopardy!” are easier (as mocked by

categories like “States that end with Hamp-
shire” or clues like “You wear these on your
face to help you see better” on Saturday Night
Live), and “College Jeopardy!” isn’t necessar-
ily easier but does have more college football
and popular music. Questions are tuned to ex-
pected players’ abilities. 1BM did not want the
computer to be targeted, lest the questions
be adversarial against the computer. Chap-
ter 10.19 discusses what this would look like
if we specifically wanted that to happen.

WATSON ON JEOPARDY!: UNQUESTIONED ANSWERS FROM IBM’S TOUR DE FORCE 59

John Henry vs. the Buzzing Machine

Unlike oB (Chapter 5.1), while Jeopardy! also uses signaling devices, these
only work once the question has been read in its entirety; Ken Jennings (also a
former QB player while he was a student at BYu) himself explains it on a Planet

Money interview (Malone, 2019):

Jennings: The buzzer is not live until Alex finishes reading the question.
And if you buzz in before your buzzer goes live, you actually lock yourself
out for a fraction of a second. So the big mistake on the show is people
who are all adrenalized and are buzzing too quickly, too eagerly.
Malone: ok. To some degree, Jeopardy! is kind of a video game, and a
crappy video game where it’s, like, light goes on, press button—that’s it.
Jennings: (Laughter) Yeah.

Jeopardy!’s buzzers are a gimmick to ensure good television; however, 0B
buzzers discriminate knowledge.

So how does this interact with Watson? Watson receives all of the clues
electronically and likewise gets an electronic signal to know when it is safe to
buzz in, then computes a probability of being right and buzzes in if it’s above
that threshold (Section 6.2). In contrast, humans have to either guess when it
is safe to buzz or wait for a light to turn on.

Jeopardy! gurus explicitly advise new players not to wait for the light—your
puny human reflexes are too slow. Indeed, one of Ken Jenning’s strengths
was his uncanny ability to internalize the cadence of Alex’s voice and when a
technitian would activate the buzzer (Jennings, 2006). In contrast, Watson is
literally an electromechanical buzzing machine that could get first crack at
every question it wants.’

Unfortunately, despite subjecting everyone within earshot to these rants,
the computer science community thinks that the question is settled: computers
are better than humans at answering questions. This is despite Ken basically
saying that it did, indeed, come down to the buzzer.

Moreover, what makes for a “normal” difficulty question for a human does
not always apply to a computer. Let’s first talk about what makes a clue
easier for a computer and then we’ll talk about what makes a clue harder for a

computer.

Easy for a Computer. When I appeared on Jeopardy!, my final Jeopardy! was:

After this woman’s death, her daughter wrote,

“As far as we in the family are concerned, the

alphabet now ends at Y”

All of us got the question right; it just so happened that Jeopardy! used a very

similar clue that aired as we were recording:

° In practice, this is not always true. Because
Watson computed its responses in real time,
it could not come up with a response in time
for particularly short questions.

60 QUESTIONING ARTIFICIAL INTELLIGENCE

“G” is for grand master as well as this woman

who received the 2009 Grand Master Award.

The correct response is of course Sue Grafton. For poorly read contestant like
myself, only studying previous clues allowed us to get the answer right. I've
never read a Grafton book, but I know she writes mystery books and has titles
of the form “A”is for Alibi (and that’s the only title I can think without looking
at Wikipedia).

For Watson, this is “memorization” is trivial: a single letter implies that
the answer is Grafton. But just like you should not think that 'm smart for
getting lucky to have seen a reused clue, you should not praise Watson for
finding near-repeat questions. And it’s not just trivia games: Google’s dataset
of questions (which we’ll talk about in more Chapter 8.5) have many identical
questions (Lewis et al., 2021), which makes it an imperfect yardstick. Moreover,
Watson can also store the entirety of Wikipedia, easily looking up capitals,
authors, etc.

Indeed, when a computer can find an exact quote (as was in my final Jeop-
ardy! clue), the question becomes even easier. Then the computer just needs to
find the appropriate article that contains the quote and then just find whatever
entity is mostly likely to be a Jeopardy! answer.

Where systems like Watson struggle are on computation, matching novels
and movies to plots, combining multiple clues, lateral thinking, and word-
play (Kaushik and Lipton, 2018). And this is not just a matter of degree:
computers struggle with all such questions, even if they’re in the top row
of Jeopardy! While a computer is theoretically good at math, the kinds of
programs that answer trivia questions struggle answering match questions
with numbers in the double digits (Wallace et al., 2019b).

This is why the goal of A1 is general artificial intelligence (Chapter 3): while
we can build specialized systems for Jeopardy! clues or math problems, unlike
a reasonably smart human, a single program can’t “do it all”. Unlike for human
contestants, the “difficulty” of Jeopardy! questions for a computer has no
relationship to the nominal value. We talk about how Facebook/Meta dealt
with this problem in Chapter 10.19: tell the authors what’s hard for a computer.

6.4 Two Nice Guys, One Computer with no Shame

Given the “too easy” questions and the buzzer, what does this actually mean
for gameplay? A question comes in, and Watson has the choice of answering
it or not: it can win every race to the buzzer if it wants. Then, of the things it
cannot answer, Ken and Brad fight over the scraps. Thus, for a computer to
win this competition, it needs only to be able to answer a third of the questions
correctly.

Now, the Jeopardy! nerds reading the book (I love you all), will point out
that this isn’t true, because the clues are not weighted equally: some are

worth more than others. However, as we discussed above, what’s difficult for

WATSON ON JEOPARDY!: UNQUESTIONED ANSWERS FROM IBM’S TOUR DE FORCE 61

a computer isn’t always difficult for a human (and vice versa), so it really is
a random third of the questions. While a good human player might be weak
on the buzzer and be confident that if they know more they’ll win the harder
clues, this isn’t true for a human facing off against Watson.

Moreover, the computer has no shame: it uses a strategy called the “Forrest
Bounce” (Rogak, 2020, more infamously associated with James Holzhauer and
Arthur Chu). Rather than going through the categories top to bottom (easy
to hard), Watson goes through the clues somewhat randomly, searching for
Daily Doubles and trying to optimize its score. Again, there’s nothing wrong
with this—it’s the optimal strategy! But if it’s the “right” way to play the game,
why doesn’t every human do it?

That’s because humans want to follow social norms. The producers of the
show tell you up and down that you shouldn’t play the game like that, and
you don’t want to make them unhappy with you...they can make your life
miserable. I remember watching Jeopardy! with my grandmother and when
someone hunted for the Daily Double, she would always say “who does he
think he is” (and it was always a he). Alex Trebek also wasn’t a fan (Marchese,
2018):10

When the show’s writers construct categories they do it so that there’s a flow
in terms of difficulty, and if you jump to the bottom of the category you may
get a clue that would be easier to understand if you’d begun at the top of the
category and saw how the clues worked. I like there to be order on the show,
but as the impartial host I accept disorder.

And nobody, nobody, wants to make Alex unhappy.

Ken would sometimes do a little hunding for the Daily Double against a
particularly formiddable opponent, but he would normally be well-behavied so
as not to upset the powers that be. Watson, however, was a soulless machine;
and having a machine on the stage was no exciting that nobody faulted it for its
strategy. If anyone is to blame, it’s probably Gary Tesauro; adding his strategy
for playing the board increased Watson’s win percentage considerably (Tesauro
et al,, 2013). But if you put him in a room with the withering stares of Jeopardy!
producers (or worse, Alex Trebek) and that code would be deleted in no time.

6.5 The Legacy of Watson

Let’s review Watson’s appearance on Jeopardy!:

1. all questions are of “normal” difficulty;
2. thus the two human contestants know nearly all of the clues; but
3. Watson can win the buzzer race whenever it wants.

If Watson wins such a match, does that mean that it is superior to these supurb
humans?
I hope that you are reluctant to answer “yes” (not just because Jeopardy!

has trained you to respond to answers with questions). Perhaps I've planted

" Rogak (2020) quotes a saltier take Trebek
offered to Howard Stern: “It only works, dick-
weed, if you know the correct response to
everything that’s up there”

62 QUESTIONING ARTIFICIAL INTELLIGENCE

a seed of doubt: no, we cannot yet conclude computer superiority from this
experiment. And this is not the end of the story for judging whether computers
are superhuman in their intelligence. Since then, we've seen claims that
computers are smoking lawyers in taking the LSAT or is better than radiologists
in reading X-rays. Watson was just the beginning of the story, as since then
we’ve seen both a tremendous improvement in the technologies that drive A1
(we review these advances in Chapter 9.1) and a greater interest in measuring
how smart these models are. Watson was just the beginning of the story, in
both respects.

In the next chapters, we go beyond the methods that Watson used to the
modern QA has actually reached possible parity with humans and how to
actually measure how far ai has come since Ken Jennings lost to Watson
(Chapter 10).

	Introduction: The Unanswered Questions
	Who am I?
	How the Book is Structured

	I Question Answering Before Computers
	Question Answering: The Foundation and Savior of Civilization
	The Sphynx
	The Socratic Method
	Gestumblindi
	The Foundation of Civilization

	The Turing Test: A Game Show Pitch that Defined Artificial Intelligence
	Turing's Legacy
	The Imitation Game
	No, the Turing Test has not been Solved
	A Rigorous Test
	General Artificial Intelligence

	The Cranfield Paradigm: How a University with an Airstrip made Google Possible
	Old-Fashioned ai
	Leading up to Google

	The Manchester Paradigm: The Art of Asking the Perfect Question
	Quiz Bowl
	The Craft of Question Writing
	Why qb is the Gold Standard

	II Question Answering Present
	Watson on Jeopardy!: Unquestioned Answers from ibm's tour de force
	Why ibm Chose Jeopardy! for a Grand Challenge
	How Watson Works
	This Game is Rigged, I Tell Ya!
	Two Nice Guys, One Computer with no Shame
	The Legacy of Watson

	Formats Beyond Stand-Alone QA
	Multihop QA
	Conversational QA
	Multimodal

	Datasets: Build or Adopt?
	What Question Datasets are There?
	TREC QA
	CNN / Daily Mail
	SQuAD
	Search Engines: The Source of Natural Questions
	Natural Questions Five Years Later
	Is iid the Right Choice of Data?
	Surprise, this is a Trivia Tournament!

	The Tools to Answer Questions
	A Vector in a Haystack

	Siri takes the SAT
	How Humans Cheat
	How Computers Cheat
	Leaderboards are Shiny
	A Generative Story for Leaderboards
	Ranking and Comparing Subjects
	IRT for Leaderboards
	Qualitative Insights on Leaderboards
	A Re-Imagined Leaderboard Dashboard
	Related Work
	Conclusion
	Future Work
	SQuAD Item Examples
	Logistic Regression Features
	IRT Model Type Correlation
	Ranking Stability Experiments
	The IRT Statistical Test
	Multidimensional IRT Clustering
	Reproducibility Checklist
	Adversarial Questions
	Human–Computer Cooperation

	Finding and Dealing with Bad Questions

	III Question Answering Future
	Fulfiling Turing's Gameshow
	What AI Dystopias You Should be Afraid of
	Learning by Doing: Objective Functions
	Humans are Jerks

