Reinforcement Learning

Jordan Boyd-Graber
University of Maryland

Introduction / Foundations



Steve Gorton and Tim Ridley, Alexander Hafemann/Getty Images



a
o
Q
3]

(2
€
o
S

L




Control Learning

Consider learning to choose actions, e.g.,
e Roomba learning to dock on battery charger
e Learning to choose actions to optimize factory output
e Learning to play Backgammon

Problem characteristics:

Delayed reward

Opportunity for active exploration

Possibility that state only partially observable

Possible need to learn multiple tasks with same sensors/effectors



Early Example: TD-Gammon

Learn to play Backgammon
[Tesauro, 1995]

e +100 if win

e -100 if lose
e 0 for all other states

Trained by playing 1.5 million games against itself
Approximately equal to best human player



Where RL is Now

Language Model Alignment
Machine Translation

Question answering

Starcraft
e Go

Atari
Robotics



The Problem of Delayed Reward

e Mistakes now could have a big cost in the future
e You need to set up an opportunity now for a payoff in the future

e Hard to know which is which



Reinforcement Learning Problem

observation

e At each step ¢ the agent:

> Executes action a,

> Receives observation o,

> Receives scalar reward 1,
e The environment:

> Receives action a,

> Emits observation o,

» Emits scalar reward 7,



Reinforcement Learning Problem

Agent
State Reward Action
Environment
a a a
S0 0 > 5] ! = 52 2 >
"o "1 2

Goal: Learn to choose actions that maximize
2

r 2 404 r 9 where ) <~ </



Markov Decision Processes

Assume

finite set of states S
set of actions A

at each discrete time agent observes state s, € S and chooses
action a, € A
then receives immediate reward 1,
and state changes to s,
Markov assumption: s; 1 =0(s;,a;) and r, = r(s;, a;)
> e, r, and s, depend only on current state and action

> functions 6 and r may be nondeterministic
» functions 6 and r not necessarily known to agent




State

e Experience is a sequence of observations, actions, rewards
01,711,071, ...,041,04, T;
e The state is a summary of experience
St :f(olr rn,ay...,as 1,0, rt)
e In a fully observed environment

s; = f(or)



Agent’s Learning Task

Execute actions in environment, observe results, and

e learn action policy 7t : S — A that maximizes
2
]E[rt +rrat+y rt+2+...]

from any starting state in S
e here 0 <7y <1 is the discount factor for future rewards
Note something new:
e Target functionis t:S — A
e but we have no training examples of form (s, a)

e training examples are of form ((s,a), r)



What makes an RL agent?

e Policy: agent’s behaviour function
e Value function: how good is each state and/or action

e Model: agent’s representation of the environment



Policy

e A policy is the agent’s behavior
> |t is a map from state to action:
» Deterministic policy: a = n(s)
> Stochastic policy: 7t(a|s)=p(als)



Value Function

To begin, consider deterministic worlds ...
For each possible policy 7t the agent might adopt, we can define an
evaluation function over states

_ 2
VHs) =r+rra+7rae+...
oo
EZylrt_H-
i=0

where 14, 1141, ... are from following policy 7t starting at state s



Example: Imitation Learning

e Take examples of experts {(s1,a;)...}
e Learn a classifier mapping s — a
e Create loss as the negative reward



Example: Imitation Learning

Take examples of experts {(s;, a;)...}
e Learn a classifier mapping s — a

Create loss as the negative reward

What if we diverge?



Likelihood Ratio Policy Gradient

Let T be state-action sy, Uy, ..., Sy, Uy . Utility of policy 7t parametrized
by 0 is

U(H ﬂ,’g U

ZR(st,ut 77-'9] ZP JOR(T). (@)

Our goal is to find 6:

~

mgaxU(H):meaXZ p(7t;0)R(T) (5



Approaches to RL

Value-based RL

e Estimate the optimal value function Q*(s, a)

e This is the maximum value achievable under any policy
Policy-based RL

e Search directly for the optimal policy w*

e This is the policy achieving maximum future reward
Model-based RL

e Build a model of the environment

e Plan (e.g. by lookahead) using model






	Q-Learning

