
Reinforcement Learning

Jordan Boyd-Graber

University of Maryland

Introduction / Foundations

1

Steve Gorton and Tim Ridley, Alexander Hafemann/Getty Images

From iScoop

Control Learning

Consider learning to choose actions, e.g.,

• Roomba learning to dock on battery charger

• Learning to choose actions to optimize factory output

• Learning to play Backgammon

Problem characteristics:

• Delayed reward

• Opportunity for active exploration

• Possibility that state only partially observable

• Possible need to learn multiple tasks with same sensors/effectors

4

Early Example: TD-Gammon

Learn to play Backgammon
[Tesauro, 1995]

• +100 if win

• -100 if lose

• 0 for all other states

Trained by playing 1.5 million games against itself
Approximately equal to best human player

5

Where RL is Now

• Language Model Alignment

• Machine Translation

• Question answering

• Starcraft

• Go

• Atari

• Robotics

6

The Problem of Delayed Reward

• Mistakes now could have a big cost in the future

• You need to set up an opportunity now for a payoff in the future

• Hard to know which is which

7

Reinforcement Learning Problem

• At each step t the agent:
▶ Executes action at
▶ Receives observation ot
▶ Receives scalar reward rt

• The environment:
▶ Receives action at
▶ Emits observation ot+1
▶ Emits scalar reward rt+1

8

Reinforcement Learning Problem

Agent

Environment

State Reward Action

r + aa r + r + ... , where a <10 2
2

1

Goal: Learn to choose actions that maximize

0s 1s 2s0a 1a 2a

0r 1r 2r
...

 <09

Markov Decision Processes

Assume

• finite set of states S

• set of actions A

• at each discrete time agent observes state st ∈ S and chooses
action at ∈ A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 =δ(st , at) and rt = r (st , at)
▶ i.e., rt and st+1 depend only on current state and action
▶ functions δ and r may be nondeterministic
▶ functions δ and r not necessarily known to agent

10

State

• Experience is a sequence of observations, actions, rewards

o1, r1, a1, . . . , at−1, ot , rt (1)

• The state is a summary of experience

st = f (o1, r1, a1, . . . , at−1, ot , rt) (2)

• In a fully observed environment

st = f (ot) (3)

11

Agent’s Learning Task

Execute actions in environment, observe results, and

• learn action policy π : S → A that maximizes

E
�

rt +γrt+1+γ
2rt+2+ . . .
�

from any starting state in S

• here 0≤ γ< 1 is the discount factor for future rewards

Note something new:

• Target function is π : S → A

• but we have no training examples of form 〈s , a 〉
• training examples are of form 〈〈s , a 〉, r 〉

12

What makes an RL agent?

• Policy: agent’s behaviour function

• Value function: how good is each state and/or action

• Model: agent’s representation of the environment

13

Policy

• A policy is the agent’s behavior
▶ It is a map from state to action:
▶ Deterministic policy: a =π(s)
▶ Stochastic policy: π(a | s) = p (a | s)

14

Value Function

To begin, consider deterministic worlds . . .
For each possible policy π the agent might adopt, we can define an
evaluation function over states

V π(s) ≡ rt +γrt+1+γ
2rt+2+ . . .

≡
∞
∑

i=0

γi rt+i

where rt , rt+1, . . . are from following policy π starting at state s

15

Example: Imitation Learning

• Take examples of experts {(s1, a1) . . .}
• Learn a classifier mapping s → a

• Create loss as the negative reward

• What if we diverge?

16

Example: Imitation Learning

• Take examples of experts {(s1, a1) . . .}
• Learn a classifier mapping s → a

• Create loss as the negative reward

• What if we diverge?

16

Likelihood Ratio Policy Gradient

Let τ be state-action s0, u0, . . . , sH , uH . Utility of policy π parametrized
by θ is

U (θ) =Eπθ ,U

�

H
∑

t

R (st , ut);πθ

�

=
∑

τ

P (τ;θ)R (τ). (4)

Our goal is to find θ :

max
θ

U (θ) =max
θ

∑

τ

p (τ;θ)R (τ) (5)

17

Approaches to RL

Value-based RL

• Estimate the optimal value function Q ⋆(s , a)

• This is the maximum value achievable under any policy

Policy-based RL

• Search directly for the optimal policy π⋆

• This is the policy achieving maximum future reward

Model-based RL

• Build a model of the environment

• Plan (e.g. by lookahead) using model

18

19

	Q-Learning

