The Handbook of
Computational
Linguistics and
Natural Language
Processing

Edited by
Alexander Clark, Chris Fox

and Shalom Lappin

MWWILEY-BLACKWELL

11 Evaluation of NLP Systems

PHILIP RESNIK AND JIMMY LIN

1 Introduction

As the engineering branch of computational linguistics, natural language process-
ing is concerned with the creation of artifacts that accomplish tasks. The operative
question in evaluating an NLP algorithm or system is therefore the extent to which
it produces the results for which it was designed. Because NLP encompasses an
enormous range of different tasks, each with its own particular criteria for assess-
ing results, a single chapter on evaluation cannot hope to be comprehensive. In
this chapter, therefore, we have selected a number of basic issues, laying out some
fundamental principles of NLP evaluation, describing several of the most com-
mon evaluation paradigms, and illustrating how the principles and paradigms
apply in the context of two specific tasks, word-sense disambiguation and ques-
tion answering. For a comprehensive treatment, we refer the reader to Galliers and
Jones (1995).1

It must be noted that the design or application of an NLP system is some-
times connected with a broader scientific agenda; for example, cognitive modeling
of human language acquisition or processing. In those cases, the value of a
system resides partly in the attributes of the theory it instantiates, such as con-
ciseness, coverage of observed data, and the ability to make falsifiable predictions.
Although several chapters in this volume touch on scientific as well as practical
goals (e.g., the chapters on computational morphology, unsupervised grammar
acquisition, and computational semantics), such scientific criteria have fallen out
of mainstream computational linguistics almost entirely in recent years in favor of
a focus on practical applications, and we will not consider them further here.

In addition, like other types of computer software, NLP systems inherit a wide
range of evaluation concerns, criteria, and measures from the discipline of soft-
ware quality evaluation. When assessing any software product, for example, it is
typical to consider such issues as cost, support, efficiency, reliability, scalability,
interoperability, security, and so forth. Many relevant issues are covered by the

272 Philip Resnik and Jimmy Lin

ISO 9126 standard for software product evaluation (ISO 1991), and specific exten-
sions to that standard have been created specifically for the purpose of evaluating
language technology (EAGLES 1996).

To introduce some of the ideas we will be looking at in greater detail below,
consider evaluation in the context of a ‘semantic’ search engine that utilizes NLP
components.? For purposes of illustration, suppose that the search engine matches
users’ questions with facts that appear in documents, and that the underlying
method involves a component that analyzes sentences to produce normalized
subject-relation—object dependency tuples. The use of normalized dependency
tuples has the potential to allow more specific concept-level matches; for example,
the question When was the light bulb patented by Edison?, can match Thomas Edison’s
patent of the electric light bulb via the tuple [Thomas Edison, patented, bulbs].3

How might the quality of dependency tuple analysis be evaluated? One time-
tested approach that deserves mention would be to skip formal evaluation of this
component altogether, and instead perform a demonstration of the search engine
for the project’s investors or other target audience. Well-designed demos are often
simple to execute, easy to understand, and surprisingly powerful in making a
compelling case for a system’s value. However, demos can also be quite mislead-
ing because they rarely exercise the full range of a system’s capabilities and can be
carefully orchestrated to hide known flaws.

Another approach would be to perform a standard intrinsic evaluation of the
dependency extraction component. In a case like this, one would typically cre-
ate a test set that contains a sample of test sentences for input, along with the
ground truth, i.e., an ‘answer key’ in the form of tuples that the system is expected
to create for each test sentence. The design of the evaluation would quantify the
system’s agreement with the ground truth, much as a teacher counts up the agree-
ments and disagreements between a student’s multiple-choice test answers and
the answer key. In this case, each test sentence has a set of tuples that together
comprise the correct answer, and the goal is to produce all and only the tuples
in that set. In settings like this, one would usually calculate recall, measuring the
extent to which all the tuples were produced, precision, capturing the extent to
which only correct tuples are included in the output, and F-measure, a score that
combines recall and precision into a single figure of merit (see Section 3.2). One
might compare the F-measure for the current tuples analyzer against an earlier
version (a formative evaluation, measuring progress and informing new develop-
ment) or against competing techniques (a summative evaluation, concerned with
the outcome of development).

The intrinsic evaluation helps to assess the quality of the tuples analyzer, but
how do we know that improvements in the analyzer actually make a difference
in the overall quality of the system (that is, better search results)? One answer is
to perform an extrinsic evaluation, which measures the quality of the analyzer by
looking at its impact on the effectiveness of the search engine. In this case, we
would create a test set not for the analyzer, but for the search engine as a whole. The
test items in this case would therefore be user questions, and the ground truth
for each question would be the answers that should be produced by the system.

Evaluation of NLP Systems 273

Precision, recall, and F-measure could be used again here, but this time they would
be used to quantify the extent to which the search engine produces all and only
the correct answers to the test questions. Crucially, the quality of the dependency
tuple analyzer is measured only indirectly, by evaluating the whole system with
and without it, or by swapping out this analyzer and substituting another. To
put this another way, the extrinsic evaluation treats the analyzer as an enabling
technology, whose value is not intrinsic but rather resides in its contribution to a
larger application (Resnik 2006).

Even an extrinsic evaluation may still be too far removed from quality in the
real world, however. One way to address this would be to conduct a laboratory
test involving real users employing the search engine to perform a standardized
task, e.g., finding the answers to a set of test questions. This is, in effect, a variation
on the extrinsic evaluation in which the ‘system as a whole” actually includes not
only the search engine but the user as well, and the setup makes it possible not
only to measure the quality of the answers produced, but also to look at factors
such as time taken and user satisfaction.

Ultimately, however, laboratory experimentation cannot completely predict
how a technology will fare in a real-world environment with real users performing
real tasks. For this, a system must be deployed, and observations made in situ of
the system, the users, and their interaction. Learning how the technology does in
the real world comes at the cost of experimental controls and replicability, but for
many pieces of real-world technology, the final test is not the laboratory measures,
but the usefulness of the tools, the satisfaction of users, and their willingness to
come back and use that technology again.

2 Fundamental Concepts

2.1 Automatic and manual evaluations

Perhaps the most basic dichotomy in evaluation is that between automatic and
manual evaluation. Often, the most straightforward way to evaluate an NLP algo-
rithm or system is to recruit human subjects and ask them to assess system output
along some predetermined criteria. In many cases, this is the best approach for
finding out whether a system is actually useful and whether users are pleased
with the system — a criterion that goes beyond whether or not the system meets
predetermined requirements or specifications. Note that manual evaluations
are the norm in many fields, for example, user studies in human-computer
interaction.

Unfortunately, manual evaluations have two significant limitations: they often
generate inconsistent results and they are slow. Human beings are notoriously
inconsistent in their judgments about what is ‘good” (both across multiple sub-
jects and sometimes with themselves), and even with the adoption of standard
best practices in study design (e.g., counterbalanced presentation of experimen-
tal conditions, calibration for learning effects and environmental settings, etc.),

274 Philip Resnik and Jimmy Lin

it is difficult to control for unanticipated factors. In addition, manual evaluations
are time-consuming and laborious. In addition to time for the actual experiment,
human subjects must be recruited, scheduled, and trained. To arrive at statis-
tically significant findings, dozens of subjects are often necessary. All of these
factors conspire to make well-designed manual evaluations a large investment of
resources.

Modern NLP has evolved into an empirical, evaluation-driven discipline, which
means that researchers have little patience for long turnaround between successive
experiments. Thus, automatic evaluation methods are favored today by most. The
development of evaluation algorithms that mimic the behavior of human asses-
sors is an important subfield in NLP, and such research can be readily found
in the pages of conference proceedings and journal articles in the field. How-
ever, recognizing that manual evaluations remain valuable, it is common practice
to periodically conduct studies that establish a correlation between results of
automatic and manual evaluations. If such a correlation is demonstrated, then
researchers have a degree of confidence that improvements according to automatic
evaluations will translate into meaningful improvements for users.

2.2 Formative and summative evaluations

The distinction between formative and summative evaluations is best summed up
with a quote: “When the cook tastes the soup, that’s formative; when the customer
tastes the soup, that’s summative.”* Formative evaluations typically occur during
the development of NLP systems — their primary purpose is to inform the designer
as to whether progress is being made towards the intended goals. As such, forma-
tive evaluations tend to be lightweight (so as to support rapid evaluation) and
iterative (so that feedback can be subsequently incorporated to improve the sys-
tem). In contrast, summative evaluations are typically conducted once a system is
complete (or has reached a major milestone in its development): they are intended
to assess whether intended goals of the system have been achieved.

In NLP research, there is a tendency for formative evaluations to be automatic,
so that they can provide rapid feedback in the development process. In con-
trast, summative evaluations often involve human judges, in order to assess the
usefulness of the system as a whole for users.

2.3 Intrinsic and extrinsic evaluations

Intrinsic and extrinsic evaluations form another contrast that is often invoked in
discussions of evaluation methodologies. In an intrinsic evaluation, system out-
put is directly evaluated in terms of a set of norms or predefined criteria about the
desired functionality of the system itself. In an extrinsic evaluation, system output
is assessed in its impact on a task external to the system itself. Evaluation of doc-
ument summarization systems serves to illustrate this distinction. In an intrinsic
evaluation, we would ask questions such as the following about system-generated

Evaluation of NLP Systems 275

summaries: How fluently does the summary read? Does the summary contain
coverage of key ideas? On the other hand, extrinsic evaluations consider tasks in
which a document summarization system may be useful - for example, as a com-
ponent of a search engine that summarizes results and presents short snippets to
help users decide whether or not a document is relevant (i.e., worth reading). In
the context of this particular task, we might ask: How accurately can a user make
such relevance judgments, compared to having access to the entire document?
How much more quickly can such judgments be made with summaries?”

In NLP research, at least, there is an affinity between intrinsic, formative, and
automatic evaluations on the one hand, and extrinsic, summative, and manual
evaluations on the other. The characteristics of these different approaches nat-
urally explain these associations. Since extrinsic evaluations must be couched
within the context of a user task, it is difficult to avoid having human subjects.
It is usually easier to develop automatic techniques for intrinsic evaluations since
only the system output needs to be considered.

2.4 Component and end-to-end evaluations

Most NLP systems today are not monolithic entities, but rather consist of distinct
components, often arranged in a processing pipeline. For example, identification
of semantic role (e.g., agent, patient, theme) depends on syntactic parsing, which
in turn depends on part-of-speech tagging, which in turn depends on tokenization.
We could choose to evaluate each component individually, or instead consider
multiple components at once. For example, when evaluating the accuracy of a
syntactic parser that requires part-of-speech tags as input, one could assess the
quality of the parse-trees based on the output of a real tagger that may contain
errors (an end-to-end evaluation), or based on ‘gold standard” part-of-speech tags
supplied by a human (a component evaluation).®

Both component and end-to-end evaluations are useful, but for different pur-
poses. Obviously, end-to-end evaluations provide a more meaningful quantifica-
tion of system effectiveness under real-world circumstances. However, measuring
system characteristics under ideal circumstances may also be useful, since it iso-
lates the system from errors in other components. With component evaluations, it
is possible to artificially manipulate input and observe the impact on system effec-
tiveness. For example, in evaluating a syntactic parser one could start with gold
standard part-of-speech tags and then artificially degrade tagging accuracy in a
controlled manner. Doing so would allow a researcher to understand the input-
output characteristics of the component, i.e., sensitivity of the parser to tagging
errors.

In most cases, it is desirable to conduct both component and end-to-end evalu-
ation of NLP systems since components often interact in non-obvious ways. For
some systems, the effects of errors are multiplicative: that is, since each compo-
nent depends on the previous, errors propagate down a processing pipeline, so
that the final output may be quite poor despite high effectiveness for each of the
components (consider the pipeline for identifying semantic roles described above).

276 Philip Resnik and Jimmy Lin

For other systems, the overall effectiveness is much higher than one would expect
given individual component-level effectiveness — these represent cases where the
components are able to compensate for poor quality. One example of this is in
cross-language information retrieval (CLIR), where the user issues a query in one
language to retrieve documents in another language. Abstractly, one can think
of CLIR systems as having a translation component and a search component. In
even the most sophisticated systems, the translation component is little better than
word-for-word translation — the quality of which is quite poor by human stan-
dards. Yet CLIR systems are about as effective as monolingual IR systems — since
the inherent redundancy in documents and queries (i.e., the presence of multiple
words referring to the same concepts) compensates for the poor translation quality.

2.5 Inter-annotator agreement and upper bounds

In many NLP evaluation settings — particularly intrinsic, component-level eval-
uations — the task being evaluated is to ‘annotate’ (tag, label) text. For example,
part-of-speech taggers assign grammatical category tags to words, named entity
extractors assign category labels (e.g., PERSON, ORGANIZATION) to phrases, and
parsers can be viewed as assigning constituent labels like NP or VP to spans of text
within a sentence. It is common practice in such cases to compare the performance
of multiple human annotators, for two reasons. First, if human beings cannot reach
substantial agreement about what annotations are correct, it is likely either that the
task is too difficult or that it is poorly defined. Second, it is generally agreed that
human inter-annotator agreement defines the upper limit on our ability to measure
automated performance; Gale et al. (1992: 249) observe that “our ability to measure
performance is largely limited by our ability [to] obtain reliable judgments from
human informants.” As a well-known case in point, the WordNet lexical database
includes sense tags that are notoriously fine-grained, e.g., distinguishing verb
sense chill (make cool or cooler) from chill (lose heat) because the former involves
causing a change and the latter undergoing a change in temperature (Palmer et al.,
2007). Could we really expect any word-sense disambiguation algorithm to achieve
95 percent agreement with human-selected WordNet sense tags, for example, if
the human taggers themselves can only agree 75 percent of the time when doing
the task (Snyder & Palmer 2004)? For this reason, human agreement is generally
viewed as the upper bound on automatic performance in annotation tasks.”

One way to measure agreement between two annotators is simply to mea-
sure their observed agreement on a sample of annotated items. This, however,
may not constitute an accurate reflection of the true difficulty or upper bound
on the task, because, for any given task, some agreements may occur according
to chance. Consider a simple example: if the annotation task were to sense-tag
instances of the word bank as either RIVERBANK or FINANCIALBANK, and two
annotators make their choices independently by flipping a coin, they could be
expected to agree 50 percent of the time. Therefore, in order to establish the valid-
ity of a coding scheme, as well as define upper bounds for the annotation task,
it is now common practice to compute a measure of chance corrected agreement

Evaluation of NLP Systems 277

(Artstein & Poesio 2008). Correction for chance is captured by measures that
generally take the form

1) 1?0 je
— Lle

where Ay is the observed agreement (total agreements divided by total number of
items), and A, is an estimate of chance agreement varying according to the spe-
cific measure. Cohen’s kappa is in widespread use for this purpose, but Artstein
and Poesio (2008) provide a thorough discussion of its limitations and of alterna-
tive measures, as well as in-depth consideration of detailed issues, including, e.g.,
measuring agreement among three or more annotators, weighting some disagree-
ments more heavily than others, and the interpretation of agreement coefficient
values.

2.6 Partitioning of data used in evaluations

Within most NLP settings, system development and evaluation involves partition-
ing the available data into the following disjoint subsets:

e Training data. This term most often refers to a data set where input items are
paired with the desired outputs, often as the result of manual annotation (cf.
Section 2.5). It usually refers to the input for supervised learning algorithms,
but it can refer more broadly to any data used in the process of developing the
system’s capabilities prior to its evaluation or use.?

e Development (dev) data. Some systems include parameters whose settings
influence their performance. For example, a tagger might choose its output
based on a weighted vote Y A;p;(input), where each p; is a different method
of prediction and the 1; are weights for the different methods. Rather than
choosing weights or parameters arbitrarily, it is common to hold out some sub-
set of the training data as a development set. A search for good values for ; is
conducted, either in an ad hoc manual fashion or using an optimization tech-
nique such as expectation-maximization. In either case, performance on the
development data measures the ‘goodness’ of the parameter choices.

e Development-test (devtest) data. Typically one or more data sets are also held
out for use in formative evaluation (Section 2.2) as the system is developed.
A devtest set is just a test set that is being used during the cycle of system
development and improvement.

e Test data. This term describes the data that will be used to evaluate the sys-
tem’s performance after development has taken place, i.e., at the point of a
summative evaluation.”

It is typical to reserve as much data as possible for training and development. For
example, one might split the available data into 70, 20, and 10 percent for training,
held-out (i.e., dev and devtest), and test data respectively.

278 Philip Resnik and Jimmy Lin

Disjointness of the subsets is crucial, because a fundamental principle in NLP
evaluation is that the technology being evaluated cannot be informed by the test data.
In its purest form, this means that test data should remain entirely untouched and
unseen by the researcher or developer until system development is frozen just
prior to evaluation. The reasoning behind this stricture is simply that evaluations
are intended to help predict a system’s performance on future unseen data, i.e., to
generalize. In machine learning, the error rate when testing on the training data is
referred to as the resubstitution error rate, and it is regarded as a severe underesti-
mate of the true error rate, as a result of overfitting. Performance on the training
data can be a useful reality check, of course, since something is probably wrong if
it is not quite good. But it cannot be relied upon to predict future performance.

Moreover, it should be noted that evaluations can be overly optimistic even
when test data are kept properly disjoint from data used in system development.
For example, it is typical to assume that systems will be evaluated (or run) on the
same kind of data that were used during system development, e.g., language that
is similar in genre and topic. It is widely recognized, however, that system per-
formance will suffer when this assumption is not met (e.g., Escudero et al., 2000;
Gildea, 2001).

It is also worth noting that there are, in fact, some uses of the test data that are
generally regarded as valid. The following are some examples:

e For research on machine translation systems, using the test set to automatically
filter the phrase table, so that it contains only entries that are relevant for the
given test set. This is a common way to reduce the size of the model so that it
fits in memory (Lopez 2008a). Note that this affects the efficiency of a system,
but does not fundamentally alter its behavior.

e Using the test set automatically for model adaptation (e.g., Kim & Khudanpur
2003).

e Performing error analysis prior to moving on to a fresh test set —i.e., the current
test set becomes devtest data.

e Looking just at performance numbers on test data, without examining the sys-
tem’s output. For example, parsing researchers test over and over again using
Section 23 of the Wall Street Journal in the Penn TreeBank, and MT researchers
test repeatedly on test sets from the NIST machine translation evaluation
exercises.

2.7 Cross validation

Employing a single partition of the available data is common, but it does present
two potential problems. First, regardless of whether the evaluation results are
good or bad, one has to wonder whether the results reflect a particularly fortu-
itous (or infortuitous) selection of test data. More precisely, a single split provides
only a point estimator for whatever measure or measures are used for evaluation,
as opposed to an interval estimate such as a 95 percent confidence interval. Sec-
ond, as a practical matter, even a 70 percent allocation may not produce a large

Evaluation of NLP Systems 279

enough training set for automatic learning methods if only a small quantity of
annotated data is available.

Within NLP, the most common solution to these problems is k-fold cross-
validation. Instead of creating a single split, the full set of available data is
partitioned into k pieces, or folds, {fi...f}.! Then evaluation is conducted as
follows:

forifrom 1 to k
Let TEST = f; be the test set
Let TRAIN = U]-#i{fj} be used as the training set
Compute m;, the evaluation measure, by training on TRAIN and testing on

TEST
Compute statistics, e.g., the mean and standard deviation, over the {m;}.

If held-out data is needed for parameter tuning, TRAIN is subdivided into training
and dev data.

K-fold cross-validation ensures that every item in the full data set gets used for
both training and testing, while at the same time also ensuring that no item is
used simultaneously for both purposes. Therefore it addresses the concern that
the evaluation results only reflect a particularly good or particularly bad choice
of test set. Indeed, addressing the second concern, the set {m; ...} can be used
to compute not only the mean, as a scalar figure of merit, but also the standard
deviation, enabling the computation of confidence intervals and tests of statis-
tical significance when alternative algorithms or systems are compared. Finally,
although values of k are typically between 4 and 10 — e.g., training uses from
75 percent to 90 percent of the available data — it is possible to use data even more
efficiently by employing a larger number of folds. At the extreme, one can set kequal
to the number of items N in the full data set, so that each fold involves N — 1 items
used for training and one item for testing. This form of cross-validation is known
as leave-one-out, and is similar to the jackknife estimate (Efron & Gong 1983).

2.8 Summarizing and comparing performance

All quantitative evaluation paradigms make use of at least one figure of merit,
sometimes referred to as an evaluation measure or evaluation metric, to summa-
rize performance on a relevant property of interest. Some of the most important
paradigms, and their associated evaluation measures, are discussed in Section 3.

Table 11.1 shows the typical structure for reporting results in NLP evaluations.
The first column of the table identifies the ‘conditions,” i.e., variant approaches
taken to the task. A single evaluation measure might be reported (e.g., accuracy,
Section 3.1). Or there might be columns for multiple measures, often trading off
against each other, with some single metric representing their combination (e.g.,
recall, precision, and F-measure, Section 3.2).

Turning to the rows, a results table almost always includes at least one baseline
condition. The role of a baseline is similar to the control condition in an experiment
studying the effectiveness of a new drug: in order for the study to successfully

280 Philip Resnik and Jimmy Lin

Table 11.1 Structure of a typical summary of evaluation results

Condition Measure 1 Measure 2 Combined Measure
Baseline 1 Mll31 Mgl MB!
Baseline 2 MmB2 M52 MEB2
Variation 1 M{! e Mt
Variation 2 MY 2 Mg 2 MY?
Upper Bound ~ MY MY MY

demonstrate that a drug is effective, patients taking the drug must show bene-
fits over and above that experienced by patients taking a placebo. Similarly, the
baseline condition in an NLP experiment defines the performance that must be
improved upon in order for the study to deliver a positive result. One category of
baselines can be defined independently of prior work in the literature; for exam-
ple, choosing an answer at random, or always selecting an item’s most frequent
label in the training data, or applying something else that is equally obvious and
simple.!! Another kind of baseline is the effectiveness of some prior approach on
the same data set. Generally the first category can be viewed as a ‘reality check’:
if you cannot beat one of these baselines, most likely something is fundamentally
wrong in your approach, or the problem is poorly defined (see Section 2.5).

The ‘upper bound’ for a task defines the highest level of performance one could
expect to attain in this experiment. Typically, upper bounds are defined by human
inter-annotator agreement (as discussed in Section 2.5). Sometimes, alternative
upper bounds are defined by allowing the system to use knowledge that it would
not have access to in a fair evaluation setting. As an example, a machine transla-
tion system might be permitted to produce its 1000-best hypotheses for each input
sentence, and the oracle upper bound would be defined as the score of the hypothesis
that performs best when compared against the reference translations. In practice,
of course, an MT system cannot choose its single-best output by looking at correct
translations of the input. But the oracle upper bound helps to quantify how much
better the system could potentially get with better ranking of its hypotheses (Och
et al., 2004).

When comparing system results against baselines, upper bounds, or across vari-
ations, it is important to recognize that not all differences between scores matter.
One question to consider is whether or not an apparent difference is statistically
significant; that is, if the difference is unlikely to have occurred as a result of
chance variation. As a simple example, suppose we are selling a coin-flipping
machine that will (we claim) make a fair coin more likely to land heads up. If we
test the machine by performing an experiment with 10 flips, and the coin comes
up heads 6 times instead of 5, should a potential buyer be convinced that our
machine works as advertised, compared to typical, unassisted coin flips? Prob-
ably not: even with normal, ‘unimproved’ coin flipping, someone doing a large
number of 10-flip experiments could be expected to get the same result, exactly

Evaluation of NLP Systems 281

6 heads out of 10 flips, in fully 20 percent of those experiments, just by chance. So
getting that particular result in this experiment could easily have happened even
if the machine just flipped coins in the usual way. By convention, an experimental
outcome is not usually considered “statistically significant’ unless the likelihood of
its having occurred by chance is less than 5 percent, often written p < .05.12

Even if a difference in experimental conditions is statistically significant, how-
ever, it is essential to recognize that the result may not be large, important, or even
meaningful. The ‘significance” of an experimental improvement (in the ordinary
sense of the word) is usually calibrated as a matter of folklore or common wisdom
within a particular experimental community. In information retrieval, for example,
a system might meet accepted criteria for a meaningful result by achieving a .05
absolute improvement in average ‘precision at 10’ (the precision computed using
the ten most highly ranked hits in response to a query), with an improvement
of .10 being considered substantial.'> In machine translation, researchers might
expect to see around a one-point improvement in BLEU score (Papineni et al., 2002)
on one of the recent NIST evaluation data sets, with a gain of two points or more
being considered substantial.'

However, the bottom line is that no hard-and-fast rule involving evaluation
numbers or statistical significance can tell the full story when comparing alterna-
tive approaches to a problem. Ultimately, the potential value of a new contribution
in NLP depends also on the relevance of the evaluation task, the representative-
ness of the data, the range of alternative approaches being compared, and a host
of other more tangible and less tangible factors.

Finally, it is worth noting that sometimes the relative difference in performance
metrics provides more insight than their absolute difference. On the combined
measure, the relative improvement of Variation 1 over Baseline 1 in Table 11.1 is

V1 Bl

) M;” - M~
ME

For example, improving accuracy from M5! = 35% to MY! = 40% is only a 5 per-
cent improvement in absolute terms, but the relative improvement defined in (2) is
more than 14 percent. To make the point more dramatically, if a system improves
accuracy from 98 percent to 99 percent, this may seem like only a small accom-
plishment, only one percentage point. But the picture changes a great deal if the
results are expressed in terms of error rate (100 percent — accuracy): the improved
system cuts the number of errors in half, which can make a huge difference if the
number of inputs is very large.

3 Evaluation Paradigms in Common Evaluation
Settings

At the most basic level, NLP systems are designed to accomplish some task, which
can be characterized by input-output characteristics. Thus, evaluation boils down

282 Philip Resnik and Jimmy Lin

to a conceptually simple question: for a set of inputs, to what extent does system
output correspond to outputs that are correct or desirable? This question helps orga-
nize common paradigms in evaluation, discussed in this section. In some cases,
there is a one-to-one correspondence between input and the correct output (e.g.,
part-of-speech tagging, word-sense disambiguation). In other cases, multiple out-
puts are desirable (e.g., information retrieval, parallel text alignment), the output
takes the form of text (e.g., machine translation, document summarization), or the
output contains complex structure (e.g., parsing). Finally, the output may involve
values on a scale (e.g., language modeling, semantic similarity).

3.1 Omne output per input

The most straightforward evaluation paradigm in NLP is one in which each input
produces a single output — a nominal value that can be considered a category
or label (Stevens 1946) — and that output is compared against a single correct
answer. This is analogous to multiple-choice tests, although for many NLP tasks
the number of possible answers for any input can be quite large.

Classic word-sense disambiguation tasks fall into this category: each word, in its
context, represents an input, and the possible outputs are defined by an enumera-
tion of sense labels. For example, suppose that the task involves deciding whether
instances of the word ash are being used in the sense ASHj, ‘a tree of the olive
family,” or in the sense ASHjy, ‘the solid residue left when combustible material is
burned’ (Lesk 1986).12

To evaluate disambiguation performance in settings like this, one would run
the system on inputs {a1,...,a4,} (Where each a; is an instance of the word ash
in context), producing single-best output label decisions {Iy,...,I;} (where each
I; € {AsSHj, ASHp}), and then compare those decisions to ‘ground truth’” human-
annotated sense labels {t1,...,t,} (t; € {ASH1, ASH}). The primary figure of merit
would be the percentage of agreement with the true labels, i.e., the accuracy:

() A= Y i—1.nAgL; _ number correct

n n
where agr; is 1if [; = t; and 0 otherwise.!® Sometimes the inverse of accuracy, or
error rate, is reported instead: 1 — A.

Sometimes a system is not required to produce any answer at all for some
inputs; that is, I; could remain undefined. In some tasks, it might be preferable
for the system to remain silent than to risk being wrong. In those cases, we can
define d to be the number of defined answers, and d replaces n in the denominator
when accuracy is calculated. We then define coverage as d/n, in order to measure
the extent to which answers were provided. By default, one can assume d = n, i.e.,
coverage is 100 percent, when accuracy is presented alone as the figure of merit.
When d < 1, accuracy and coverage can be traded off against each other — for exam-
ple, a system can obtain high accuracy by providing an answer for an input only
when it is very confident, at the expense of coverage. This is quite similar to the
trade-off between precision and recall discussed below in Section 3.2. Indeed, the

Evaluation of NLP Systems 283

Table 11.2 Contingency table for a
document retrieval task

relevant —relevant
retrieved r n
—retrieved R N
C __|relevantnretrieved|
Precision =r/(r +n) = retrieved|
_ _ |relevantnretrieved|
Recall=r/(r+ R) = relevant]

terms “precision” and ‘recall” are sometimes used, in our view somewhat confus-
ingly, to refer to accuracy and coverage in task settings where each input has only
a single output.'”

In a common variant of this paradigm, the desired output for each input is a
sequence ¥ ... Y. For example, in part-of-speech tagging, each input 4; would be
a whole sentence, i.e., a sequence of tokens x1 ...x;, and the output label would
be a sequence y; ...y of grammatical category tags. When the output sequence
stands in one-to-one correspondence with the input sequence, as in this example, it
is most common simply to evaluate as if each input token comprises its own single-
token labeling problem, even if that’s not really how the output was produced.
This is equivalent to concatenating all the output sequences to produce one long
sequence of length 1, and then computing A as defined above.

When the output sequence can differ in length from the input sequence, the situ-
ation becomes a bit more complicated; we treat that case as a variant of structured
output in Section 3.2.

3.2 Multiple outputs per input

For many NLP tasks, there is no single correct answer; multiple outputs are
sought. Information (document) retrieval is perhaps the best illustration of this
general evaluation paradigm. Given an information need expressed as a query
(e.g., ‘gardening in arid soil’), the task of the system is to return the set of
documents that are relevant and, in most cases, there are multiple satisfactory doc-
uments. Formalizing the task abstractly in terms of set membership — a document
is either retrieved by the system or it is not, and a document is either relevant to
the information need or it is not — is an imperfect approximation of the real-world
task, where documents may be relevant only to a greater or lesser extent, and
systems may estimate degrees of confidence. But this abstraction makes it possi-
ble to define the quality of a system’s set of retrieved documents in terms of two
extremely useful and intuitive concepts: precision and recall. The contingency table
in Table 11.2 illustrates how these are computed. Precision is the fraction of system
output that is relevant, or r/(r +n); recall is the fraction of relevant documents that
is retrieved, or r/(r + R).18

284 Philip Resnik and Jimmy Lin

Notice that the numerator is the same in both cases: r counts the number of
documents that were both relevant and retrieved by the system. For precision, we
are interested in comparing that with the total number of documents retrieved by
the system, hence r + n in the denominator. If n = 0, i.e., no irrelevant documents
were retrieved, then precision is perfect. For recall, we are interested in comparing
r with the total number of documents that should have been retrieved, hence r + R
in the denominator. If R = 0, i.e., every relevant document was retrieved, then
recall is perfect.

High precision is easy to obtain, at the expense of recall: just return the single
document most likely to be relevant, or, more generally, do not return documents
unless the system’s confidence in their relevance is very high. This keeps n close
to 0, but of course it also increases R, so recall suffers. Similarly, perfect recall is
easy to achieve (just return all the documents in the collection, so R = 0), but at
the expense of precision, since 7 is then likely to be large.

To balance the need for both precision and recall, F-measure (or F-score) is often
reported:

B2+1) xP xR

4 F =
@ Fp =

The F-measure computes a harmonic mean between precision and recall, where
the relative emphasis on the two components is controlled by the g parameter
(higher values of B place more emphasis on recall). The choice of 8 depends a
lot on the task. For example, a person searching the web for gardening infor-
mation does not want to slog through lots of irrelevant material, and does not
require every single gardening article that is out there, so precision is a high pri-
ority. In contrast, a complex legal argument can be undermined by even a single
court ruling overturning a previous precedent, so systems for legal research can
be expected to place a heavy emphasis on recall.

F-measure is frequently used to compare different systems. In addition to com-
bining two measures into a single figure of merit, F-measure has the attractive
property of incurring a penalty in performance when precision and recall are very
different from each other, thereby discouraging an emphasis on one at the expense
of the other. Other common metrics in information retrieval (e.g., mean average
precision, R-precision) derive from this set-based formalism, with the addition of
other concepts such as document ranking. It is worth noting that all these met-
rics are intrinsic in nature, in that they do not measure how useful the retrieved
documents are in a real-world task, e.g., writing a report, answering a complex
question, making a decision, etc.

3.3 Text output for each input

Frequently in NLP, the task of the system is to produce text in response to the
input. Machine translation is the most obvious example of the paradigm, since
an output text in the target language is produced for the source-language input.

Evaluation of NLP Systems 285

Text summarization is similar, producing an output text that condenses pertinent
information from a set containing one or more input documents.

Evaluating text output introduces a difficult challenge: how do we account for
the fact that the desired information can be expressed correctly in many differ-
ent ways? Testing for exact equality is necessary when computing agreement in
Section 3.1, or when computing the intersection |relevantNretrieved| in Section 3.2,
but string equality hardly seems appropriate as a way of evaluating whether or
not two texts are saying the same thing. One solution to this problem is to rely on
human judges to compare system outputs with correct answers (see Section 3.5),
but that solution is extremely labor-intensive. It would generally be impracti-
cal, for example, to collect human judgments on a weekly basis in order to track
progress during system development.

Most ways of dealing with this challenge involve two elements. First, texts being
compared are broken down into units that can be compared via exact match-
ing, e.g., word n-grams. Then a bag of n-grams from the system output can be
compared with the n-grams present in the human ‘gold standard’ reference, quan-
tifying the relationship using measures derived from precision and/or recall. In
essence, the n-grams in gold standard references define the ‘relevant’ elements of
the desired response to the input, and n-grams in the system output constitute
what the system has ‘retrieved.” This idea has been operationalized, for example,
in the BLEU metric for machine translation (Papineni et al., 2002) and the ROUGE
metric for text summarization (Lin & Hovy 2003), both of which are widely used
in their respective communities, albeit not without some controversy.

A second useful strategy is to define multiple correct references for each input.
For example, it is not uncommon in MT evaluations to provide anywhere from
two to ten correct translations for each test input. The evaluation measure is then
generalized to take into account correct or ‘relevant’ units from multiple valid out-
puts. For example, consider a system that produces the English sentence my dog is
always hungry, with reference translations

my dog is hungry all the time
my pup is always famished

Using the BLEU metric, which focuses on precision, the system would get credit
for having produced ‘relevant’ unigrams my, dog, is, always, and hungry; bigrams
my dog, dog is, and is always; and the trigram my dog is. Notice that it is getting
some credit for having conveyed both always and hungry, even though no single
reference translation conveys the combined meaning always hungry using both of
those words.

3.4 Structured outputs

The paradigm in Section 3.3 also provides a way of thinking about evaluation set-
tings in which structured outputs are expected, whether or not multiple references
are available. The basic idea is the same: to break the structured representations

286 Philip Resnik and Jimmy Lin

up into bags of smaller units and then compute precision and/or recall over those
smaller units. Metrics like BLEU and ROUGE apply this concept to sequences
(since sentences are sequences of tokens), which are broken up into bags of
n-grams. But the idea is significantly more general; for example, the PARSEVAL
measures (Abney et al., 1991) evaluate parsers by computing precision and recall
over constituents.!”

Another way to compare structured outputs, particularly sequences, is edit dis-
tance or its variants. For example, speech recognition researchers compute the word
error rate between the system’s output and the reference transcription:

(5) WER = %

where S, D, and I are, respectively, the number of substitutions, deletions,
and insertions in a minimum-cost edit transforming the system output into the
reference. In machine translation, translation edit rate (TER) has gained currency.
TER “measures the amount of editing that a human would have to perform to
change a system output so it exactly matches a reference translation” (Snover et al.,
2006: 223).20

3.5 Output values on a scale

Some tasks involve producing a value on a measurement scale, e.g., the traditional
nominal, ordinal, interval, and ratio scales of Stevens (1946).21 Producing values
on nominal scales can be viewed simply as assigning a label or category to each
input (one can only meaningfully ask about equality, but not relative ordering or
magnitude). Comparisons of nominal outputs are addressed in Sections 3.1 and
chance-corrected agreement is discussed in Section 2.5.

Ordinal scales capture a common situation in which desired outputs represent
ratings, e.g., performing opinion analysis in order to assign a rating from one to
five stars given the text of a movie review. Output values are ordered with respect
to each other, but the intervals on the scale are not necessarily comparable. One
cannot assume that the ‘distance” between a one-star and two-star review rep-
resents the same difference in quality as the distance between a four-star and a
five-star review — the number of stars merely tells you how the movies are ranked
relative to each other. In these situations, it is common to compare a system’s
output ratings against human ratings by computing the Spearman rank order cor-
relation coefficient, rs (sometimes p), over the set {(0;, t;)} of system outputs paired
with human ‘ground truth’ ratings.

Interval scales are similar to ordinal measurements, with the additional assump-
tion that differences between values constitute equivalent intervals. On the Celsius
scale, for example, the difference in temperature between 1°C and 2°C is the same
as the difference between 101°C and 102°C. Within NLP, comparisons of system
scores against human ratings often assume this interpretation of the ratings scale is
valid, and use the Pearson product-moment correlation (Pearson’s r) over {(o;, t;)}

Evaluation of NLP Systems 287

as a figure of merit. In machine translation, the validity of automatic evaluation
metrics like BLEU (Papineni et al., 2002), TER (Snover et al., 2006), and METEOR
(Banerjee & Lavie 2005) is sometimes supported by comparing automatic scores
with human ratings of accuracy and fluency, using Pearson’s r. Similarly, auto-
matic measures of semantic similarity are often evaluated via correlation with
human similarity ratings, using pairs of words (e.g., furnace, stove) as the items
for which similarity is being computed (Resnik 1999; Pedersen et al., 2007).

Ratio scales assume that there is meaning not only for sums and differences on
the scale but also for products and ratios. Within NLP, the most common quanti-
tative output on a ratio scale would be the assignment of probabilities to inputs,
often in the context of language modeling. For example, when evaluating a tri-
gram language model py.;, the test set consists of a text T = w1 ...wy, and we
measure either the cross entropy

N
1
6) H=-+ > log, pri (wjlwi_pw;_1)
i=1

or, more commonly, the perplexity, 2. Notice that whenever the model makes an
accurate prediction in the test data, i.e., when the probability py; (w;|w;_ow;_1) is
high for an observed instance of w; preceded by w;_,w;_1 in T, the contribution
to H is small. Intuitively, perplexity is measuring the extent to which the model
Ptri correctly reduces ambiguity, on average, when predicting the next word in
T given its prior context. To put this another way, on average we are ‘k-ways
perplexed” about what the next word will be, with k ranging from 1 to the vocab-
ulary size |V|.22 In the worst case, the model might be no better than rolling a fair

|V|-sided die, yielding perplexity k = o RNXlog i _) meaning that the model
provides no value at all in narrowing down the prediction of the next word. At
the other extreme, a model that always predicts the next word perfectly (giving it
a probability of 1 and therefore zero probability to all alternatives) would have a
perplexity of k = 20 = 1.

Sometimes evaluation involves comparing output in the form of a probability
distribution with ground truth that is also a distribution. In such cases, it is com-
mon to use Kullback-Leibler distance (also known as KL divergence or relative
entropy) to compare the two distributions:

(7) D(plim) =) p(x)log

px)
xeX (x)

m

where p is the true probability distribution and m is the model being evaluated.
Kullback-Leibler distance is zero when m is identical to p, and otherwise it is
always positive. Its value can be interpreted as the cost, measured in bits of infor-
mation, of encoding events in X using the imperfect model m rather than the
truth p.23

288 Philip Resnik and Jimmy Lin

4 Case Study: Evaluation of Word-Sense
Disambiguation

Word-sense ambiguity is one of the earliest challenges singled out by researchers
interested in automatically processing natural language. Some well-known early
discussions of the problem include Weaver’s (1949) memorandum on automatic
translation, Bar-Hillel’s (1960) argument that automatic high-quality translation
requires comprehensive world knowledge in order to resolve lexical ambiguity,
and Wilks’s (1975) ‘preference semantics” approach to semantic interpretation.
Word-sense disambiguation (WSD) is conventionally regarded as the task of iden-
tifying which of a word’s meanings (senses) is intended, given an observed use of
the word and an enumerated list of its possible senses. In this section, we briefly
review how approaches to WSD have been evaluated, with reference to the con-
cepts we introduced earlier in the chapter. For informative general treatments of
WSD, see Ide and Véronis (1998) and Agirre and Edmonds (2006), and for a more
comprehensive discussion of recent WSD evaluation, see Palmer et al. (2006).

4.1 Pre-Senseval WSD evaluation

From the earliest days, assessing the quality of WSD algorithms has been primarily
a matter of intrinsic evaluation, and “almost no attempts have been made to eval-
uate embedded WSD components” (Palmer et al., 2006: 76). Only very recently
have extrinsic evaluations begun to provide some evidence for the value of WSD
in end-user applications (Resnik 2006; Carpuat & Wu 2007). Until 1990 or so, dis-
cussions of the sense disambiguation task focused mainly on illustrative examples
rather than comprehensive evaluation. The early 1990s saw the beginnings of more
systematic and rigorous intrinsic evaluations, including more formal experimen-
tation on small sets of ambiguous words (Yarowsky 1992; Leacock et al., 1993;
Bruce & Wiebe 1994).24

Since word-sense disambiguation is typically defined as selecting one sense
among a number of possibilities, it is naturally regarded as a classification prob-
lem involving the labeling of words in context (Edmonds & Agirre 2008). Thus
evaluation has required answering six main questions.?>

How do you define the ‘sense inventory,” i.e., the set of possible sense labels for a word?
Early efforts involved a wide variety of answers to this question — for exam-
ple, Roget’s thesaurus, various paper dictionaries, and various machine readable
dictionaries. By the mid-1990s, WordNet (Fellbaum 1998) had emerged as a stan-
dard, easily available lexical database for English, and WordNet’s ‘synonym sets’
provided a widely used enumeration of senses for content words (nouns, verbs,
adjectives, and adverbs).

How do you select input items? Early experimentation focused on identifying a
small set of ‘interesting,” highly ambiguous words, e.g., line and interest, and

Evaluation of NLP Systems 289

collecting a sample of those words within their sentential contexts. Cowie et al.
(1992) represent a notable exception, tackling the problem of disambiguating all
the content words in a sentence simultaneously.

How do you obtain labels (‘ground truth’) for items in the data set? In early studies it
was not uncommon for experimenters to label their own test sets, e.g., Yarowsky
(1992); Leacock et al. (1993); Bruce and Wiebe (1994). Miller et al. (1993) and Ng and
Lee (1996) introduced large-scale manual sense labeling of corpora using Word-
Net, laying the groundwork for WSD approaches involving supervised learning
techniques.

How do you compare system output against ground truth? In a setting where one
correct label is assumed per input, the most natural figure of merit is accuracy,
possibly accompanied by coverage if the system is permitted to abstain from label-
ing some inputs. Measures derived from cross-entropy (equation 6) can be used to
give partial credit to systems that assign a probability distribution over senses
(Resnik & Yarowsky 1999; Melamed & Resnik 2000).

What constitutes a lower bound on performance? An obvious but overly generous
lower bound is chance, selecting randomly among a word’s senses according to
a uniform distribution. A more sensible lower bound is defined by tagging each
instance of a word with its most frequent sense.?® It is also not uncommon to com-
pare WSD algorithms against easily implemented dictionary-based techniques,
e.g., Lesk (1986) or variants.

What constitutes an upper bound on performance? Word-sense disambiguation is a
classic example of a task where human inter-annotator agreement, and particu-
larly chance-corrected agreement, are used to define the limits on what can be
expected from automated algorithms (Artstein & Poesio 2008).

4.2 Senseval

In April 1997, a workshop entitled “Tagging Text with Lexical Semantics: Why,
What, and How?” was held in conjunction with the Conference on Applied
Natural Language Processing (Palmer & Light 1999). At the time, there was
a clear recognition that manually annotated corpora had revolutionized other
areas of NLP, such as part-of-speech tagging and parsing, and that corpus-driven
approaches had the potential to revolutionize automatic semantic analysis as well
(Ng 1997). Kilgarriff (1998: 582) recalls that there was “a high degree of consensus
that the field needed evaluation,” and several practical proposals by Resnik and
Yarowsky (1997) kicked off a discussion that led to the creation of the Senseval
evaluation exercises.

The Senseval-1 exercise involved ‘lexical sample’ tasks for English, French, and
Italian (Kilgarriff 1998), essentially a community-wide version of evaluations pre-
viously conducted by individual researchers for words like line (Leacock et al.,

290 Philip Resnik and Jimmy Lin

1993) and interest (Bruce & Wiebe 1994). As a community-wide figure of merit,
Resnik and Yarowsky (1997) had suggested using cross-entropy rather than accu-
racy in order to accommodate systems with probabilistic output, thereby allowing
a system A to obtain partial credit for word w; even if the correct sense cs; was not
deemed most probable (cf. equation 6):

N
(8) H= _Z\ll Z log, pa(cs;|w;, context;)

i:l
Senseval-1 adopted a variant of this suggestion proposed by Melamed and Resnik
(2000), which accounted for fine- to coarse-grained distinctions in a sense hier-
archy, and also permitted human annotators to specify a disjunction of correct
answers in ground truth sense labelings.?”

Following Senseval-1, other Senseval exercises continued for some time as the
primary forum for evaluation of word-sense disambiguation. Senseval-2 dra-
matically expanded the scope of the exercise to include ten languages, using
WordNet-based sense inventories. It also introduced ‘all-words’ tasks, requir-
ing systems to assign a sense label to every content word within a document.
Senseval-3 (Mihalcea & Edmonds 2004) continued lexical sample and all-words
tasks, and added new semantic annotation tasks including semantic role labeling
(Gildea & Jurafsky 2002), creation of logical forms, and sense disambiguation of
the words in WordNet’s definitional glosses. More recently, Senseval has become
Semeval, a series of evaluation exercises for semantic annotation involving a much
larger and more diverse set of tasks (Agirre et al., 2009).

5 Case Study: Evaluation of Question Answering
Systems

In response to a short query representing an information need, a search engine
retrieves a list of ‘hits,” or potentially relevant results. The user must then man-
ually examine these results to find the desired information. Given the amount of
information available today on the web and in other electronic formats, typical
queries retrieve thousands of hits. Question answering (QA) aims to improve on
this potentially frustrating interaction model by developing technologies that can
understand users’ needs expressed in natural language and return only the rele-
vant answers. From an algorithmic standpoint, question answering is interesting
in that it combines term-level processing techniques (from information retrieval)
with rich linguistic analysis. This section provides a case study on the evaluation
of question answering systems.

The earliest question answering systems focused on fact-based questions that
could be answered by named entities such as people, organizations, locations,
dates, etc. A few examples of these so-called “factoid” questions are shown below:

e What position did Satchel Paige play in professional baseball?
¢ What modern country is home to the ancient city of Babylon?

Evaluation of NLP Systems 291

e Who was responsible for the killing of Duncan in Macbeth?
e What Spanish explorer discovered the Mississippi River?

For several years, the locus of question answering evaluation has resided at the
Text Retrieval Conferences (TRECs).?® TREC is a yearly evaluation forum, orga-
nized by the US National Institute of Standards and Technology (NIST), which
brings together dozens of research groups from around the world to work on
shared information retrieval tasks. Different ‘tracks” at TREC focus on different
problems, ranging from spam detection to biomedical text retrieval. Question
answering occupied one such track from 1999 to 2007. During this time, the
TREC QA tracks were recognized as the de facto benchmark for assessing ques-
tion answering systems. These annual forums provide the infrastructure and
support necessary to conduct large-scale evaluations on shared collections using
common test sets, thereby providing a meaningful comparison between different
systems. The TREC model has been duplicated and elaborated on by CLEF in
Europe and NTCIR in Asia, both of which have introduced cross-language ele-
ments. This case study focuses specially on the TREC evaluations, recognizing,
of course, that it merely represents one of many possible evaluation methodo-
logies.

The TREC QA tracks occurred on an annual cycle. Several months in advance
of the actual evaluation, the document collection to be used in the evaluation was
made available to all participants, as well as results from previous years (to serve
as training data). The actual evaluation occurred during the summer: participants
were required to ‘freeze’ their systems (i.e., to conclude system development)
before downloading the official test data. Results were due before a subsequent
deadline (typically, about a week). System results were evaluated manually by a
team of human assessors at NIST during the late summer or early fall. Each TREC
cycle concluded with a workshop in November where all participants were invited
to discuss their results and plan for next year.

One might think that evaluating answers to factoid questions would be straight-
forward, but even such a seemingly simple task has many hidden complexities.
First is the issue of granularity: although the goal of a question answering sys-
tem is to directly identify the answer, it might seem a bit odd if the system
returned only the exact answer (i.e., a short phrase). Consider the question “Who
was the first person to reach the South Pole?” A response of ‘Roald Amundsen’
might not be very helpful, since it provides the user with little context (Who was
he? When was this feat accomplished? etc.). Giving the user a sentence such as
‘Norwegian explorer Roald Amundsen was the first person to reach the south
pole, on December 14, 1911” would seem to be preferable — indeed, Lin et al.
(2003a) present results from a user study that confirms this intuition.?’ In evaluat-
ing answers to factoid questions, what exactly should be assessed? Short phrases?
Sentences? A case can certainly be made for evaluating answers ‘in context,” but
requiring exact answers makes the task more challenging and helps drive for-
ward the state of the art. TREC eventually chose the route of requiring short, exact
answers, accompanied by a document from which that answer was extracted.

292 Philip Resnik and Jimmy Lin

Another issue is the notion of support: the document from which an answer
derives should provide justification for the answer. Consider a sample question,
‘What Spanish explorer discovered the Mississippi River?” An answer of ‘Her-
nando de Soto,” extracted from a document that reads ‘the sixteenth-century
Spanish explorer Hernando de Soto, who discovered the Mississippi River ...’
would be considered correct. However, the same answer extract from a document
that says ‘In 1542, Spanish explorer Hernando de Soto died while searching for
gold along the Mississippi River ..." would be considered unsupported, since the
passage does not actually answer the question. Of course, what counts as evidence
varies from assessor to assessor.

Finally, for a number of questions there are simply differences in interpretation.
A well-known example is the question “Where is the Taj Mahal?’ In addition to the
famous structure in Agra, India, there is the Taj Mahal casino in Atlantic City, New
Jersey. Whether or not the latter location was acceptable as an answer stirred quite
a debate among both TREC assessors and participants. Such questions are actually
not uncommon, especially since many noun phrases have ambiguous referents.
This was resolved, somewhat arbitrarily, by instructing assessors to interpret such
questions as always referring to the ‘most famous’ version of an entity.

Judging the correctness of system responses is the most difficult and time-
consuming aspect of TREC QA evaluations. Once the appropriate label has been
assigned (e.g., correct, inexact, unsupported, incorrect), computing scores for system
runs is relatively straightforward. The official metric varied from year to year, but
the most basic method to quantify system effectiveness is through accuracy — of
all the questions, how many were answered correctly.>

The summative nature of the TREC QA evaluations provides a fair, meaning-
ful comparison across a large number of systems. Official results from TREC are
viewed as authoritative, and the best systems are often used as yardsticks for
assessing the state of the field. There are, of course, downsides to the TREC ques-
tion answering tracks. Organizing and administering each evaluation consumes
a significant amount of resources and represents a significant investment from
both NIST and the participants (in choosing to participate). The other obvious
drawback of the TREC QA evaluations is the rigid yearly cycle.

To support formative evaluations for system development between each TREC
event, researchers have developed regular expressions for answers that mimic the
behavior of assessors, so that system output can be informally assessed without
the need for human intervention.?! The regular expressions were created by man-
ually examining actual system outputs and assessors’ judgments to capture correct
answers for each question. However, these answer patterns were simultaneously
too permissive and too restrictive. They were too restrictive in not being able to
capture all variants of correct answers — it was very difficult to predict a priori
all variant forms of correct answers, e.g., different ways of writing numbers and
dates. At the same time, the regular expressions were too permissive, in giving
credit to system responses that happened to coincidentally contain words in the
answer (without actually answering the question). Furthermore, the answer pat-
terns did not address the problem of support: although it was possible to use the

Evaluation of NLP Systems 293

list of relevant documents from the manual assessment as a guide, the space of
possible answer sources exceeded the number of documents that were assessed
manually, making the automatic assessment of support problematic.

Despite inadequacies with using regular expression answer patterns, they were
nevertheless useful for system development and for providing researchers with
rapid experimental feedback — which is exactly the purpose of formative eval-
uation tools. The combination of annual summative evaluations at TREC and
formative evaluations in between helped drive the state of the art in factoid
question answering.

6 Summary

Evaluation plays a crucial role in the development of language technology. In this
chapter, we have presented a set of fundamental evaluation concepts, descriptions
of the most widely used evaluation paradigms, and two case studies drawing
on the authors’ experiences with evaluation of word-sense disambiguation and
question answering systems.

NOTES

1 Thatbook is a revised version of an earlier technical report (Galliers & Jones 1993). See
also Palmer et al. (1990).

2 This illustration is modeled on the NLP-enabled Wikipedia search engine introduced
by San Francisco-based Powerset in May 2008 (Auchard 2008). However, neither
author of this chapter has any connection with Powerset, and our examples should
not be relied on as an accurate depiction of its technology.

3 Notice that this example illustrates not only dependency tuple extraction but also one
way to do normalization of dependency tuples. In particular, observe how a defi-
nite generic noun phrase the . .. bulb has been represented by a plural generic bulbs; cf.
the semantic equivalence between The dodo is extinct and Dodos are extinct (McCawley
1993: 263ff). See Katz and Lin (2003) and references therein for additional discussion of
search using dependency tuples.

4 This quote is attributed to “evaluation theorist Bob Stake” in Westat (2002: 8).

See Dorr et al. (2005) and references therein for actual studies along these lines.

6 This distinction is similar in some ways to black-box versus glass-box evaluation. The
former is restricted to external measurements such as quality of output and speed,
while the latter can take into account internal characteristics such as the quality of
knowledge resources, as well as run-time internal workings of the system.

7 Note that it is conventionally assumed that the human annotators are working inde-
pendently. In a post hoc review of one annotator’s work, a second annotator is likely
to give the first annotator’s choice the benefit of the doubt if there is a gray area, even
though she might well have made a different choice when annotating independently.
Chapter 10 in this volume, LINGUISTIC ANNOTATION, discusses in detail a wide variety
of annotation projects, as well as general principles and processes for annotation.

a1

294 Philip Resnik and Jimmy Lin

10

11
12

13

14

15
16

17

18

19

20

Supervised learning, a paradigm that currently dominates NLP systems develop-
ment, requires the availability of annotated training data. “‘Unsupervised” systems do
not require annotated training data, but they are nonetheless evaluated using anno-
tated test data. Today NLP evaluation is rarely done in the absence of annotated test
material, though at times clever tricks have been used to automatically create ‘pseudo-
annotated” test items without requiring an investment in actual annotation (e.g., Gale
et al., 1992a).

Recall from Section 2.2 that a summative evaluation can take place after a system has
been completely developed, or at some milestone in its development. In NLP research,
such milestones typically occur a few days (or a few hours, or a few minutes) before a
conference submission deadline.

Other forms of non-point estimation are also sometimes used, e.g., bootstrapping,
which involves sampling with replacement rather than creating a partition (Efron &
Gong 1983; Yeh 2000b; Krymolowski 2001).

Though see comments on the most frequent baseline in Section 4.

For a highly approachable introduction to statistical hypothesis testing, we recommend
Gonick and Smith (1994).

According to Doug Oard (personal communication), Karen Sparck Jones advocated
this threshold because it has a clear interpretation in terms of the user’s experience. He
comments: “.10 corresponds roughly to finding one more document near the top of the
list, and 0.05 corresponds roughly to finding one more document near the top of the
list about half the time. These are usually applied to MAP [mean average precision]
in practice, where the correspondence is quite approximate to those moves, but in
precision at 10 the correspondence is perfect.”

In contrast to the IR example, it must be noted that these absolute gains have no direct
interpretation in terms of improvements in the user experience.

See discussion of the Senseval ‘lexical sample” paradigm in Section 4.

This notation, based on Artstein and Poesio (2008), makes it easy to generalize from
simple agreement to chance-correct agreement as discussed in Section 2.5. Our A is
equivalent to their observed inter-annotator agreement Ag between annotators, where
one annotator is the NLP system and the other is the ground truth.

For example, Palmer et al. (2006) define precision, recall, accuracy, and coverage in such a
way that accuracy and recall are synonymous. Other closely related concepts include
misses versus false alarms, sensitivity versus specificity, and Type I versus Type II
errorSs.

The list of relevant documents forms an essential component of a test collection, a
standard experimental tool in information retrieval research. Test collections are typ-
ically constructed through large-scale system evaluations, such as the Text Retrieval
Conferences (TRECs) (for more details, see Harman 2005).

The original version of the metrics considered constituents to match in the gold stan-
dard and system-output parse-trees as long as they bracketed the same span of tokens,
regardless of constituent label. Requiring the non-terminal symbols to also match is
a straightforward and rather stricter variant. The PARSEVAL metrics also included a
third measure, ‘crossing brackets,” that penalizes irreconcilable differences between
the system parse and the gold standard; for example, (the (old men) and women) can be
reconciled with (the ((old men) and women)), since it is just missing one pair of brackets,
but there is no way to reconcile it with (the old (men and women)).

Every necessary edit constitutes an error, and so the acronym TER is also sometimes
expanded as ‘translation error rate.” Snover et al. (2006) use ‘edit,” but Mathew Snover
et al. (2005) used ‘error.’

Evaluation of NLP Systems 295

21

22

23

24

25
26

27

28
29

30

31

The use of these data types is not without controversy (see, e.g., Velleman & Wilkinson
1993).

This nice connection between the formal definition and the everyday idea of being
perplexed is suggested in the Wikipedia page for Perplexity, June 2009.

Notice that in contrast to Kullback-Leibler distance, the computation of perplexity did
not require knowing the ‘true’ distribution (for discussion, see Jurafsky & Martin 2009:
116ff.)

Yarowsky (1992: 458) observes that most previous authors had “reported their results
in qualitative terms.” He also cites a half dozen exceptions starting with Lesk (1986).
We have structured this discussion roughly following Palmer et al. (2006).

It must be noted that selecting the most frequent sense is best viewed as a supervised
approach, and therefore an unfairly rigorous lower bound for unsupervised tech-
niques, since accurately computing sense frequencies requires labeled training data.
McCarthy et al. (2004) introduced an unsupervised method for finding predominant
word senses in untagged text.

See Artstein and Poesio (2008) for an insightful analysis of this evaluation metric in the
context of measuring inter-coder agreement.

Details about TREC can be found at http://trec.nist.gov/

Note that this finding illustrates potential differences between intrinsic and extrinsic
evaluations.

See TREC QA tracks overview papers for details of different evaluation metrics that
have been adopted.

For many years, Ken Litkowski headed up this effort.

	The Handbook of Computational Linguistics and Natural Language Processing
	Contents
	List of Figures
	List of Tables
	Notes on Contributors
	Preface
	Introduction
	Part I Formal Foundations
	1 Formal Language Theory
	2 Computational Complexity in Natural Language
	3 Statistical Language Modeling
	4 Theory of Parsing

	Part II Current Methods
	5 Maximum Entropy Models
	6 Memory-Based Learning
	7 Decision Trees
	8 Unsupervised Learning and Grammar Induction
	9 Artificial Neural Networks
	10 Linguistic Annotation
	11 Evaluation of NLP Systems

	Part III Domains of Application
	12 Speech Recognition
	13 Statistical Parsing
	14 Segmentation and Morphology
	15 Computational Semantics
	16 Computational Models of Dialogue
	17 Computational Psycholinguistics

	Part IV Applications
	18 Information Extraction
	19 Machine Translation
	20 Natural Language Generation
	21 Discourse Processing
	22 Question Answering

	References
	Author Index
	Subject Index

