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Interpretability

= We believe that interpretability is important
= But need to be able to measure
= Differences for supervised and unsupervised ML
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Evaluation

Model A

Model B

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Model C

Held-out Data

Sony Ericsson's Infinite
For Search, Murdoch Looks

Price War Brews Between
Amazon and Wal-Mart
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Evaluation

Held-out Log
Likelihood

Model A— -4.8 Held-out Data
Model B
odel B— -15.16

Price War Brews Between
Model C — -23.42

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Amazon and Wal-Mart

Measures predictive power (likelihood)
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But we don’t use topic models for prediction!
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Qualitative Evaluation of the Latent Space
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Figure 3: Eight selected factors from a 128 factor decomposition. The displayed word stems are the 10 most
probable words in the class-conditional distribution P(w|z), from top to bottom in descending order.
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Qualitative Evaluation of the Latent Space

dan Boyd-Graber |

UMD

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

?
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Qualitative Evaluation of the Latent Space

DA centralbank europeeiske ecb s lan centralbanks

DE zentralbank ezb bank europdischen investitionsbank darlehen
EL tpanela Tpanelag KEVIPIKN EKT KEVTPLIKNG TPATIELES
EN bank central ecb banks european monetary

ES banco central europeo bce bancos centrales

Fl  keskuspankin ekp n euroopan keskuspankki eip

FR banque centrale bce européenne banques monétaire

IT  banca centrale bce europea banche prestiti

NL bank centrale ecb europese banken leningen

PT banco central europeu bce bancos empréstimos

SV centralbanken europeiska ecb centralbankens s lan

?
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Qualitative Evaluation of the Latent Space

(a) Topic labeled as SSL (b) Topic labeled as Logging

Keyword | Probability Keyword | Probability
ssl 0.373722 log 0.141733
expr 0.042501 request .036017
init 0.033207 mod 0.0311
engine 0.026447 config 0.029871
var 0.022222 name 0.023725
ctx 0.023067 headers 0.021266
ptemp 0.017153 autoindex 0.020037
mctx 0.013773 format 0.017578
lookup 0.012083 cmd 0.01512
modssl 0.011238 header 0.013891
ca 0.009548 add 0.012661

Table 2: Sample Topics extracted from Apache
source code
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Word Intrusion

= Take the highest probability words from a topic
Original Topic

dog
cat
horse
pig
cow
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Word Intrusion

= Take the highest probability words from a topic
Original Topic
dog

cat

apple
horse

pig
cow

= [ntruder: high probability word from another topic

Jordan Boyd-Graber | UMD Fairness, Accountability, and Uncertainty | 6/23



Interpretability and Likelihood

Model Precision on New York Times
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within a model, higher likelihood # higher interpretability
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Interpretability and Likelihood

Topic Log Odds on Wikipedia
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across models, higher likelihood # higher interpretability
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What about Supervised Models?
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What about Supervised Models?

Features

viagra
opportunity
subscribe
engineering
maryland
algorithm
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What about Supervised Models?

Features

viagra
opportunity
subscribe
engineering
maryland
algorithm

" It's
Classifier SPAMI
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LIME

Locally-faithful simple

decision boundary
> 4
Good explanation
for prediction

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should |
Trust You?” Explaining the Predictions of Any Classifier. KDD 2016.
LIME: Local Interpretable Model-Agnostic Explanations
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What’s an Explanation

atheism christian

From: Richards Christianity
Subject: [8 the answer . oss

N'I_I'P_-; X.X.com 036l —_, Appearin 21% of training

___» examples, almost always in
atheism

| think— is the one true religion. o2;Mm —— Appears in 11% of training
If youd like to know more, send me a note answer - examples, always in atheism
. Why did this
happen? How
do | fix it?
Prediction probabilities
atheism [N 0ls2

christian 0.18
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What’s an Explanation

P(‘&) =0.21
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What makes good Explanation?

= [nterpretable: Humans can Understand
= Faithful: Describes Model
= Model Agnostic: Generalize to Many Models
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Method

= Complicated model predicts “near” example
= Simple model explains local variation

= Explains what complicated model focused on
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Is this a good Classifier?

Predicted: wolf Predicted: husky Predicted: wolf
True. wor True: husky Irue. wolt
w 4 4 -
)
. h » .
Predicted: wolf Predicted: husky Predicted: wolf
True. niusky True: husky Irue. Wolt
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Is this a good Classifier?

B Before explanations M After explanations
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Didn't trust the "Snow insight"

model
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Improving ML Algorithms

viagra
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subscribe
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engineering
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Improving ML Algorithms

viagra
opportunity
" subscribe *
. . SPAM!
engineering
maryland
algorithm

Jordan Boyd-Graber | UMD Fairness, Accountability, and Uncertainty | 14/23



Improving ML Algorithms
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Improving ML Algorithms
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Improving ML Algorithms

Exanple 50110 e i (@) A Loncrs Y e Y e

Words that the algorithm considers Document
important. From: j iton.unm.cdu (j
Bar length indicates Sub)oct Anothcr request for Darwin Fish
and color ly of New Mexico, Albuquerque
indicates to which Lmes 11
topic: Christianity NNTP-Posting-Host: triton.unm.cdu
(green) or Atheism
(Pink). Hello Gang,
There have been some notes recently asking where to obtain the
DARWIN fish.
This is the same question I have and I have not seen an answer on
the
net. If anyone has a contact please post on the net or email me.
Thanks,
john chadwick
Jjohnchad @triton.unm.edu
or

Please click on the words (right next to the bars) that you think
the algorithm is using incorrectly, because they are not important
to distinguish between Atheism and Christianity. They should be
red and crossed off after you click them.
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Improving ML Algorithms
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KILL ALL HUMANS
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Measuring Interpretability
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Measuring Interpretability
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Measuring Interpretability
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Measuring Interpretability

E {f il : Battle of Waterloo
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Improvement through Reinforcement Learning

Visualization

Viz  Solo

/3 6
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Improvement through Reinforcement Learning

Visualization
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Improvement through Reinforcement Learning

Visualization
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Improvement through Reinforcement Learning

Visualization
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Improvement through Reinforcement Learning

Visualization

Viz  Solo

756
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Simultaneous Interpretation is Hard!

Exhausting for humans

Computers not trusted

Differential strengths

Same word-by-word characteristic
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Takeaways

= ML should be interpretable
= We should measure interpretability
= [nterpretability should reflect the world we want
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