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Trust Part of ML Pipeline

Learn model
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ML is Everywhere

Authorizing credit

Sentencing guidelines

Prioritizing services

College acceptance

Suggesting medical treatment
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Many Cars Tone Deaf To Women's Voices

To predict and serve?
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Keep it Simple (Stupid)

= Clear preference for interpretability
= Even at the cost of performance: decision trees still popular
= But what about all of the great machine learning we’ve talked about?
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Pneumonia Example (Caruana)

= Prediction task:

o LOW Risk: outpatient: antibiotics, call if not feeling better
o HIGH Risk: admit to hospital (10% of pneumonia patients die)

= Most accurate ML method: multitask neural nets
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Pneumonia Example (Caruana)

Prediction task:

o LOW Risk: outpatient: antibiotics, call if not feeling better
o HIGH Risk: admit to hospital (10% of pneumonia patients die)

Most accurate ML method: multitask neural nets

Used logistic regression

Learned rule: HasAsthma(x) — LessRisk(x)
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Why?

= asthmatics presenting with pneumonia considered very high risk
= receive agressive treatment and often admitted to ICU

history of asthma also means they often go to healthcare sooner

treatment lowers risk of death compared to general population
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Lessons Learned (Caruana)

= Always going to be risky to use data for purposes it was not designed for

o Most data has unexpected landmines
o Not ethical to collect correct data for asthma

Much too difficult to fully understand the data

o Our approach is to make the learned models as intelligible as possible for
task at hand

Experts must be able to understand models in critical apps like

healthcare

o Otherwise models can hurt patients because of true patterns in data
o If you donaAZt understand and fix model it will make bad mistakes

Same story for race, gender, socioeconomic bias
o The problem is in data and training signals, not learning algorithm

Only solution is to put humans in the machine learning loop
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Accuracy

Decision Lists

Intelligibility



We’ve already seen problems

= Gender/racial bias
= Generalization failures

= Malicious Input

Strength of association of
occupation word vector with female gender
o

0 20 40 60 80 100
Percentage of workers in occupation who are women
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Can we just remove problematic variables?

= Not obvious a priori
= Can find correlated features
= More of a problem in deep learning
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Subject for Today

= How to measure interpretability
= How to fix biased data
= How to unbias supervised algorithms
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