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Trust Part of ML Pipeline

Learn	model	 Trust	model	 Deploy	model	
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ML is Everywhere

� Authorizing credit

� Sentencing guidelines

� Prioritizing services

� College acceptance

� Suggesting medical treatment

� How do we know it isn’t being
incompetent/evil?
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Keep it Simple (Stupid)

� Clear preference for interpretability

� Even at the cost of performance: decision trees still popular

� But what about all of the great machine learning we’ve talked about?
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Pneumonia Example (Caruana)

� Prediction task:
� LOW Risk: outpatient: antibiotics, call if not feeling better
� HIGH Risk: admit to hospital (10% of pneumonia patients die)

� Most accurate ML method: multitask neural nets

� Used logistic regression

� Learned rule: HasAsthma(x )→ LessRisk(x )
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Why?

� asthmatics presenting with pneumonia considered very high risk

� receive agressive treatment and often admitted to ICU

� history of asthma also means they often go to healthcare sooner

� treatment lowers risk of death compared to general population
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Lessons Learned (Caruana)

� Always going to be risky to use data for purposes it was not designed for

� Most data has unexpected landmines
� Not ethical to collect correct data for asthma

� Much too difficult to fully understand the data
� Our approach is to make the learned models as intelligible as possible for

task at hand
� Experts must be able to understand models in critical apps like

healthcare
� Otherwise models can hurt patients because of true patterns in data
� If you donâĂŹt understand and fix model it will make bad mistakes

� Same story for race, gender, socioeconomic bias
� The problem is in data and training signals, not learning algorithm

� Only solution is to put humans in the machine learning loop
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We’ve already seen problems

� Gender/racial bias

� Generalization failures

� Malicious Input
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Can we just remove problematic variables?

� Not obvious a priori

� Can find correlated features

� More of a problem in deep learning
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Subject for Today

� How to measure interpretability

� How to fix biased data

� How to unbias supervised algorithms
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