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Motivation

� Binary and Multi-class: problems and classifiers
� Solving Multi-class problems with binary classifiers
� One-vs-all
� All pairs
� Error correcting codes
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Classification Problems

� Natural binary
� Spam classification (spam vs. ham)
� Segmentation (same or different)
� Coreference

� However, many are multiclass
� Topic classification
� Part of speech tagging
� Scene classification
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Classifiers

� Some are directly multi-class (naïve Bayes, logistic regression, KNN)
� Other classifiers are basically binary

� SVM
� Perceptron
� Boosting
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Reduction

Multiclass Data

Binary Classifier

Goal: Multiclass Classifier
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One-Against-All

� Break k -class problem into k binary problems and solve separately

� Combine predictions: evaluate all h ’s, hope exactly one is + (otherwise,
take highest confidence)

� Incorrect prediction if only one is wrong
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Does one vs. all work here?

Discriminating between class 2 and the rest of the classes, the optimal
halfspace would be the all negative classifier
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All-Pairs (Friedman; Hastie & Tibshirani)

� One binary problem for each pair of classes

� Take class with most positives and least negatives

� Faster and more accurate than one-against-all
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Time Comparison

Assume training time is O (mα) and test time is O (ct )

Training Testing
OVA O (k mα) O (k ct )
All-pairs O
�

k 2
�

m
k

�α� O
�

k 2ct

�

OVA better for testing time, all-pairs better for training. (All-pairs usually
better for performance.)
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Error Correcting Output Codes (Dietterich & Bakiri)

� Reuce to binary using “coding” matrix

� Train classifier for each bit

� Choose closest row of coding matrix to predict
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ECOC

� If rows of M are far apart, will be robust to error

� Much faster if k is large

� Disadvantage: binary problems may be unnatural
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How to construct codes

� Exhaustive (if k small):length 2k−1−1
� Row 1 has only ones
� Row 2: 2k−2 zeros followed by 2k−2−1 ones
� Row 3: 2k−3 zeros, 2k−3 ones, 2k−3 zeros, 2k−3−1 ones
� . . .

� Random codes: James and Hastie ’98 showed that this reduces
variance through model averaging
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That’s it for classification!

� You can implement multiple forms of classification

� Derive theoretical bounds for many classification tasks

� Today is bridge to the future: classification foundation of other ML tasks
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