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Beyond Binary Classification

� Before we’ve talked about combining weak predictor (boosting)

� What if you have strong predictors?

� How do you make inherently binary algorithms multiclass?

� How do you answer questions like ranking?
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General Online Setting

� For t = 1 to T :
� Get instance xt ∈ X
� Predict ŷt ∈ Y
� Get true label yt ∈ Y
� Incur loss L ( ŷt , yt )

� Classification: Y = {0, 1}, L (y , y ′) = |y ′− y |
� Regression: Y ⊂R, L (y , y ′) = (y ′− y )2

� Objective: Minimize total loss
∑

t L ( ŷt , yt )
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Experts

Prediction with Expert Advice

� For t = 1 to T :
� Get instance xt ∈ X and advice at , i ∈ Y , i ∈ [1, N ]
� Predict ŷt ∈ Y
� Get true label yt ∈ Y
� Incur loss L ( ŷt , yt )

� Objective: Minimize regret, i.e., difference of total loss vs. best expert

Regret(T ) =
∑

t

L ( ŷt , yt )−min
i

∑

t

L (at ,i , yt ) (1)
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Experts

Mistake Bound Model

� Define the maximum number of mistakes a learning algorithm L makes
to learn a concept c over any set of examples (until it’s perfect).

ML (c ) = max
x1,...,xT

|mistakes(L , c )| (2)

� For any concept class C , this is the max over concepts c .

ML (C ) =max
c∈C

ML (c ) (3)

� In the expert advice case, assumes some expert matches the concept
(realizable)
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Experts

Halving Algorithm

H1←H ;
for t ← 1 . . . T do

Receive xt ;
ŷt ← Majority(Ht , ~at , xt );
Receive yt ;
if ŷt 6= yt then

Ht+1←{a ∈Ht : a (xt ) = yt };
return HT+1

Algorithm 1: The Halving Algorithm (Mitchell, 1997)
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Experts

Halving Algorithm Bound (Littlestone, 1998)

� For a finite hypothesis set

MHalving(H ) ≤ lg |H | (4)

� After each mistake, the hypothesis set is reduced by at least by half

� Consider the optimal mistake bound opt(H ). Then

VC(H )≤ opt(H )≤MHalving(H ) ≤ lg |H | (5)

� For a fully shattered set, form a binary tree of mistakes with height
VC(H )

� What about non-realizable case?
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Experts

Weighted Majority (Littlestone and Warmuth, 1998)

for i ← 1 . . . N do
w1,i ← 1;

for t ← 1 . . . T do
Receive xt ;

ŷt ←1
�

∑

at ,i=1 wt ≥
∑

at ,i=0 wt

�

;

Receive yt ;
if ŷt 6= yt then

for i ← 1 . . . N do
if at ,i 6= yt then

wt+1,i ←βwt ,i ;
else

wt+1,i ←wt ,i
return wT+1

� Weights for every expert

� Classifications in favor of
side with higher total
weight (y ∈ {0, 1})

� Experts that are wrong get
their weights decreased
(β ∈ [0, 1])

� If you’re right, you stay
unchanged
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Experts

Weighted Majority

� Let mt be the number of mistakes made by WM until time t

� Let m∗
t be the best expert’s mistakes until time t

� N is the number of experts

mt ≤
log N +m∗

t log 1
β

log 2
1+β

(6)

� Thus, mistake bound is O (log N ) plus the best expert

� Halving algorithm β = 0
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Experts

Proof: Potential Function

� Potential function is the sum of all weights

Φt ≡
∑

i

wt ,i (7)

� We’ll create sandwich of upper and lower bounds

� For any expert i , we have lower bound

Φt ≥wt ,i =β
mt ,i (8)
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∑

i

wt ,i (7)

� We’ll create sandwich of upper and lower bounds

� For any expert i , we have lower bound

Φt ≥wt ,i =β
mt ,i (8)

Weights are nonnegative, so
∑

i wt ,i ≥wt ,i
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Experts

Proof: Potential Function

� Potential function is the sum of all weights

Φt ≡
∑

i

wt ,i (7)

� We’ll create sandwich of upper and lower bounds

� For any expert i , we have lower bound

Φt ≥wt ,i =β
mt ,i (8)

Each error multiplicatively reduces weight by β
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Experts

Proof: Potential Function (Upper Bound)

� If an algorithm makes an error at round t

Φt+1 ≤
Φt

2
+
βΦt

2
(9)
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2
+
βΦt

2
=
�

1+β
2

�

Φt (9)

� Initially potential function sums all weights, which start at 1

Φ1 =N (10)

� After mT mistakes after T rounds

ΦT ≤
�

1+β
2

�mT

N (11)
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Experts

Weighted Majority Proof

� Put the two inequalities together, using the best expert

βm∗
T ≤ΦT ≤
�

1+β
2

�mT

N (12)

� Take the log of both sides

m∗
T logβ ≤ log N +mT log

�

1+β
2

�

(13)

� Solve for mT

mT ≤
log N +m∗

T log 1
β

log
�

2
1+β

� (14)

Jordan Boyd-Graber | UMD Classification | 12 / 13



Experts

Weighted Majority Proof

� Put the two inequalities together, using the best expert

βm∗
T ≤ΦT ≤
�

1+β
2

�mT

N (12)

� Take the log of both sides

m∗
T logβ ≤ log N +mT log

�

1+β
2

�

(13)

� Solve for mT

mT ≤
log N +m∗

T log 1
β

log
�

2
1+β

� (14)

Jordan Boyd-Graber | UMD Classification | 12 / 13



Experts

Weighted Majority Proof

� Put the two inequalities together, using the best expert

βm∗
T ≤ΦT ≤
�

1+β
2

�mT

N (12)

� Take the log of both sides

m∗
T logβ ≤ log N +mT log

�

1+β
2

�

(13)

� Solve for mT

mT ≤
log N +m∗

T log 1
β

log
�

2
1+β

� (14)

Jordan Boyd-Graber | UMD Classification | 12 / 13



Experts

Weighted Majority Recap

� Simple algorithm

� No harsh assumptions (non-realizable)

� Depends on best learner

� Downside: Takes a long time to do well in worst case (but okay in
practice)

� Solution: Randomization
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