Classification

Jordan Boyd-Graber

University of Maryland

Slides adapted from Mohri

an Boyd-Graber | UMD Classification |

Beyond Binary Classification

= Before we've talked about combining weak predictor (boosting)

Jordan Boyd-Graber | UMD Classification | 2/13

Beyond Binary Classification

= Before we've talked about combining weak predictor (boosting)
o What if you have strong predictors?

Jordan Boyd-Graber | UMD Classification | 2/13

Beyond Binary Classification

= Before we've talked about combining weak predictor (boosting)
o What if you have strong predictors?

= How do you make inherently binary algorithms multiclass?

= How do you answer questions like ranking?

Jordan Boyd-Graber | UMD Classification | 2/13

General Online Setting

m Fort=1to T:

o Getinstance x, € X
o Predict j; €Y

o Gettruelabel y, €Y
o Incur loss L(3;, y;)

= Classification: Y ={0,1}, L(y, y")=1y’—y|
= Regression: Y cR,L(y,y)=(y'—y)?

Jordan Boyd-Graber | UMD Classification | 3/13

General Online Setting

Fort=1to T:

o Getinstance x, € X
o Predict j; €Y

o Gettruelabel y, €Y
o Incur loss L(3;, y;)

Classification: Y ={0,1}, L(y, y") =y’ — yI

Regression: Y c R, L(y,y)=(y'—y)?

Objective: Minimize total loss >, L(J;,)

Jordan Boyd-Graber | UMD Classification | 3/13

Prediction with Expert Advice

m Fort=1to T:
o Getinstance x; € X and advice a;,i € Y,i €[1,N]
o Predict j; €Y
o Gettruelabel y, €Y
o Incurloss L(¥;, y;)

Jordan Boyd-Graber | UMD Classification | 4/13

Prediction with Expert Advice

m Fort=1to T:

o Getinstance x; € X and advice a;,i € Y,i €[1,N]
o Predict j; €Y

o Gettruelabel y, €Y

o Incur loss L(7;, y;)

= Objective: Minimize regret, i.e., difference of total loss vs. best expert

Regret(T)= > | L(j1, yo)—min > L(ar,i, 1) (1)
t t

Jordan Boyd-Graber | UMD Classification | 4/13

Mistake Bound Model

= Define the maximum number of mistakes a learning algorithm L makes
to learn a concept ¢ over any set of examples (until it's perfect).

M;(c)= max |mistakes(L, c)| (2

X1yeens XT

= For any concept class C, this is the max over concepts c.

ML(C)=I?€61CXML(C) 3)

Jordan Boyd-Graber | UMD Classification | 5/13

Mistake Bound Model

= Define the maximum number of mistakes a learning algorithm L makes
to learn a concept ¢ over any set of examples (until it's perfect).

M;(c)= max |mistakes(L, c)| (2

X1yeens XT

= For any concept class C, this is the max over concepts c.

ML(C):I?E%XML(C) 3)

= |n the expert advice case, assumes some expert matches the concept
(realizable)

Jordan Boyd-Graber | UMD Classification | 5/13

Halving Algorithm

Hl <—H,
fort—1...T do
Receive x;;
9 — Majority(H;, d;, x;);
Receive y;;
if 7, # y, then
| Hyp—{a€H :a(x,)=y}

return Hy
Algorithm 1: The Halving Algorithm (Mitchell, 1997)

Jordan Boyd-Graber | UMD Classification | 6/13

Halving Algorithm Bound (Littlestone, 1998)

= For a finite hypothesis set

MHalving(m) < 181H] (4)

= After each mistake, the hypothesis set is reduced by at least by half

Jordan Boyd-Graber | UMD Classification | 7/13

Halving Algorithm Bound (Littlestone, 1998)

For a finite hypothesis set

MHalving(m) < 181H] (4)

After each mistake, the hypothesis set is reduced by at least by half

Consider the optimal mistake bound opt(H). Then

VC(H) < opt(H) < Myalving) < 18IH| (5)

For a fully shattered set, form a binary tree of mistakes with height
VC(H)

Jordan Boyd-Graber | UMD Classification | 7/13

Halving Algorithm Bound (Littlestone, 1998)

For a finite hypothesis set

MHalving(m) < 181H] (4)

After each mistake, the hypothesis set is reduced by at least by half

Consider the optimal mistake bound opt(H). Then

VC(H) < opt(H) < Myalving) < 18IH| (5)

For a fully shattered set, form a binary tree of mistakes with height
VC(H)

What about non-realizable case?

Jordan Boyd-Graber | UMD Classification | 7/13

Weighted Majority (Littlestone and Warmuth, 1998)

fori—1...N do

Wi,i < 1;
fort—1...T do = Weights for every expert
Receive x;; = Classifications in favor of
§ 1 [Zu, S W=D, wt]; side with higher total
Receive J;; weight (y €{0,1})
if ¥, # ¥, then = Experts that are wrong get
fori—1...N do their weights decreased
if a,; # y, then (B <l0,1])
‘ Wei,i — P Wy = |f you're right, you stay
else unchanged
Wep1,i < Wi
return wr,,

Jordan Boyd-Graber | UMD Classification | 8/13

Weighted Majority (Littlestone and Warmuth, 1998)

fori—1...N do

w1
fort—1...T do = Weights for every expert
Receive x;; = Classifications in favor of
e[, w2 Y, w]; side with higher total
Receive y;; weight (y €{0,1})
if ¥, # ¥, then = Experts that are wrong get
fori—1...N do their weights decreased
if a,; # y, then (B <l0,1])
‘ Wei,i — P Wy = |f you're right, you stay
else unchanged
| Wit1,i < Wy
return Wy,

Jordan Boyd-Graber | UMD Classification | 8/13

Weighted Majority (Littlestone and Warmuth, 1998)

fori—1...N do

wy,i < 1;
fort—1...T do = Weights for every expert
Receive x;; = Classifications in favor of
e[S, L we=Y, ow]; side with higher total
Receive y;; weight (y €{0,1})
if ¥, # ¥, then = Experts that are wrong get
fori—1...Ndo their weights decreased
if a,; # y, then (B <l0,1])
‘ Wit = Py = |f you're right, you stay
else unchanged
Wep1,i < Wi
return wr,,

Jordan Boyd-Graber | UMD Classification | 8/13

Weighted Majority (Littlestone and Warmuth, 1998)

fori—1...N do

wy;—1;
fort—1...T do = Weights for every expert
Receive x;; = Classifications in favor of
§ 1 [Zu, S W=D, wt]; side with higher total
Receive y;; weight (y €{0,1})
if ¥, # ¥, then = Experts that are wrong get
fori—1...N do their weights decreased
if a,; # y, then (B <l0,1])
‘ Wei,i — P Wy = |f you're right, you stay
else unchanged
| Wi, < Wy
return wr,,

Jordan Boyd-Graber | UMD Classification | 8/13

Weighted Majority

Let m; be the number of mistakes made by WM until time ¢

Let m} be the best expert’s mistakes until time #

N is the number of experts

logN + m;‘log%

m; <
logﬁ

Thus, mistake bound is O(log V) plus the best expert

Halving algorithm 8 =0

Jordan Boyd-Graber | UMD Classification | 9/13

Proof: Potential Function
= Potential function is the sum of all weights

o, EZ wy (7)

= We'll create sandwich of upper and lower bounds

Jordan Boyd-Graber | UMD Classification | 10/13

Proof: Potential Function

= Potential function is the sum of all weights
B, =D wy, 7)
i

= We'll create sandwich of upper and lower bounds

= For any expert i, we have lower bound

b, >w,;=p"" (8)

Jordan Boyd-Graber | UMD Classification | 10/13

Proof: Potential Function

= Potential function is the sum of all weights
B =D wy, (7)
i

= We'll create sandwich of upper and lower bounds
= For any expert i, we have lower bound

S, >w,;=p"" (8)

Weights are nonnegative, so Zi Wy, = Wy

Jordan Boyd-Graber | UMD Classification | 10/13

Proof: Potential Function

= Potential function is the sum of all weights
¢, = Z Wt i (7)
i

= We'll create sandwich of upper and lower bounds
= For any expert i, we have lower bound

O, > w,; =pme! (8)

Each error multiplicatively reduces weight by

Jordan Boyd-Graber | UMD Classification | 10/13

Proof: Potential Function (Upper Bound)

= |f an algorithm makes an error at round ¢

Be,
2

@,
®,, < ? +

Jordan Boyd-Graber | UMD Classification | 11/13

Proof: Potential Function (Upper Bound)

= |f an algorithm makes an error at round ¢

B,
i<ty
t+1 2 2

Half (at most) of the experts by weight were right

Jordan Boyd-Graber | UMD Classification | 11/13

Proof: Potential Function (Upper Bound)

= |f an algorithm makes an error at round ¢

(I)t ﬂq)l‘
Oy <+
t+1 2 2

Half (at least) of the experts by weight were wrong

Jordan Boyd-Graber | UMD Classification | 11/13

Proof: Potential Function (Upper Bound)

= |f an algorithm makes an error at round ¢

o, PO, [1+/3]
O < —+L=|—"|o
t+1 2 2 2 t

Jordan Boyd-Graber | UMD Classification | 11/13

Proof: Potential Function (Upper Bound)

= [f an algorithm makes an error at round ¢

o, po, [1+p]
¢ < —+ =——|® 9
t+1 2 2 2 t ()
= |nitially potential function sums all weights, which start at 1
& =N (10)

Jordan Boyd-Graber | UMD Classification | 11/13

Proof: Potential Function (Upper Bound)

= [f an algorithm makes an error at round ¢

® ®
. B

®,.,< = [L5]<I> 9)
t+1 = 2 2 - 2 t
= |nitially potential function sums all weights, which start at 1
& =N (10)
= After m mistakes after T rounds
1+p7""
¢ < 3 N (11)

Jordan Boyd-Graber | UMD Classification | 11/13

Weighted Majority Proof

= Put the two inequalities together, using the best expert

pm g@Ts[#]mTN (12)

Jordan Boyd-Graber | UMD Classification | 12/13

Weighted Majority Proof

= Put the two inequalities together, using the best expert

pm g@Ts[#]mrN (12)

= Take the log of both sides

1+
m7logf <logN + mTlog[Tﬂ] (13)

Jordan Boyd-Graber | UMD Classification | 12/13

Weighted Majority Proof

= Put the two inequalities together, using the best expert

pm gd)Ts[#]mrN (12)

= Take the log of both sides

1+
m7logf <logN + mTlog[Tﬂ] (13)

= Solve for mp
log N + m*%log%3

log| 15

Jordan Boyd-Graber | UMD Classification | 12/13

mr < (14)

Weighted Majority Recap

Simple algorithm

No harsh assumptions (non-realizable)

Depends on best learner

Downside: Takes a long time to do well in worst case (but okay in
practice)

Solution: Randomization

Jordan Boyd-Graber | UMD Classification | 13/13

	Experts

