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RL used to be niche subfield . ..
Now it’s all over the place

Part of much of ML hype
But what is reinforcement learning?
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RL used to be niche subfield . ..
Now it’s all over the place

Part of much of ML hype
But what is reinforcement learning?
RL is a general-purpose framework for decision-making

[m]
o RL is for an agent with the capacity to act

o Each action influences the agent’s future state
a

a

Success is measured by a scalar reward signal
Goal: select actions to maximise future reward
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Approaches to RL

Value-based RL

= Estimate the optimal value function Q(s, a)

= This is the maximum value achievable under any policy
Policy-based RL

= Search directly for the optimal policy 7*

= This is the policy achieving maximum future reward
Model-based RL

= Build a model of the environment

= Plan (e.g. by lookahead) using model
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Deep Q Learning

Optimal Q-values should obey equation

Q*(s,a)=Ey[r+yQ(s’,a’)|s,a] (1)

Treat as regression problem

Minimize: (7 +y max, Q(s’,a’, 0)—Q(s, a, 11'}))2

Converges to Q using table lookup representation
But diverges using neural networks due to:

o Correlations between samples
o Non-stationary targets
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Deep RL in Atari
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DQN in Atari

32 4x4 filters 256 hidden units Fully-connected linear
output layer

4xB4xB4

[0

Stack of 4 previous ) Fully-connected layer
frames. Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last four frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step
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Atari Results
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Policy-Based RL

= Advantages:
o Better convergence properties
o Effective in high-dimensional or continuous action spaces
o Can learn stochastic policies

= Disadvantages:

o Typically converge to a local rather than global optimum
o Evaluating a policy is typically inefficient and high variance
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Optimal Policies Sometimes Stochastic
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Optimal Policies Sometimes Stochastic

(Cannot distinguish gray states)
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Optimal Policies Sometimes Stochastic

Deterministic

(Cannot distinguish gray states)
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Optimal Policies Sometimes Stochastic

Deterministic

(Cannot distinguish gray states)
Value-based RL learns near deterministic policy!
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Optimal Policies Sometimes Stochastic

Stochastic

(Cannot distinguish gray states, so flip a coin!)
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Likelihood Ratio Policy Gradient

Let T be state-action sy, Uy, ..., Sy, Uy . Utility of policy T parametrized by

0is
U0)=Er,u ZR(St’ut) ﬂa] ZP(T;H)R(T)- 2

Our goal is to find 0:

maxU(6)= meaxZ p(T;0)R(T) (3)
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Likelihood Ratio Policy Gradient

> p(r;0)R(r) (4)

t

Taking the gradient wrt 0
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Likelihood Ratio Policy Gradient

> p(r0)R(r) (4)
t
Taking the gradient wrt 9
0)
VoU(0)= ZR( )p( H)VHP( 7;6) (5)
(6)

Move differentiation inside sum (ignore R(7) and then add in term that
cancels out
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Likelihood Ratio Policy Gradient

> p(ri0)R(7) (4)
t
Taking the gradient wrt 0:
P(7;0

VoU0)=3 R PP ©)

B VoP(530)
ZP( 05 gy R (6)
(7)

Move derivative over probability
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Likelihood Ratio Policy Gradient

> p(r;0)R(r) (4)
Taking the gradient wrt 9
P
VoU(0)=3 R(%) PET Q;VQP( 0) (5)
VoP(530)
=2 P05 gy RO ©)
=Z (7:0)V4 [log P(7; 0)] R(7) (7)

T

Assume softmax form (Vylogz =1V, z)
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Likelihood Ratio Policy Gradient

> plz;0)R(7) (4)
t
Taking the gradient wrt 6:
=ZP(T; 0)Vy [logP(T; 9)]R(T) (5)
T
Approximate with empirical estimate for m sample paths from 7

1 & . .
VgU(0)~EZVQIOgP(r‘;H)R(T’) (6)
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Policy Gradient Intuition

= Increase probability of paths with positive R
= Decrease probability of paths with negagive R
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Extensions

= Consider baseline b (e.g., path averaging)
1 & . .
VoU(0)~ — > Vglog P(r’;0)(R(z)—b(r)) (7)
m 1

= Combine with value estimation (critic)

o Critic: Updates action-value function parameters
o Actor: Updates policy parameters in direction suggested by critic
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Recap

Reinforcement learning is active subfield of ML

Deep learning option for learning policy / value functions

Representation learning helps cope with large state spaces

Still requires careful engineering and feature engineering
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