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� RL used to be niche subfield . . .

� Now it’s all over the place

� Part of much of ML hype
� But what is reinforcement learning?

� RL is a general-purpose framework for decision-making
� RL is for an agent with the capacity to act
� Each action influences the agent’s future state
� Success is measured by a scalar reward signal
� Goal: select actions to maximise future reward
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Approaches to RL

Value-based RL

� Estimate the optimal value function Q (s , a )
� This is the maximum value achievable under any policy

Policy-based RL

� Search directly for the optimal policy π∗

� This is the policy achieving maximum future reward

Model-based RL

� Build a model of the environment

� Plan (e.g. by lookahead) using model
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Deep Q Learning

� Optimal Q -values should obey equation

Q ∗(s , a ) =Es ′
�

r +γQ (s ′, a ′) | s , a
�

(1)

� Treat as regression problem

� Minimize:
�

r +γmaxa Q (s ′, a ′, ~w )−Q (s , a , ~w )
�2

� Converges to Q using table lookup representation
� But diverges using neural networks due to:
� Correlations between samples
� Non-stationary targets
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Deep RL in Atari
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DQN in Atari

� End-to-end learning of values Q (s , a ) from pixels s

� Input state s is stack of raw pixels from last four frames

� Output is Q (s , a ) for 18 joystick/button positions

� Reward is change in score for that step
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Atari Results
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Policy-Based RL

� Advantages:
� Better convergence properties
� Effective in high-dimensional or continuous action spaces
� Can learn stochastic policies

� Disadvantages:
� Typically converge to a local rather than global optimum
� Evaluating a policy is typically inefficient and high variance
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Optimal Policies Sometimes Stochastic
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Optimal Policies Sometimes Stochastic

(Cannot distinguish gray states)
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Optimal Policies Sometimes Stochastic

Deterministic

(Cannot distinguish gray states)
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Optimal Policies Sometimes Stochastic

Deterministic

(Cannot distinguish gray states)
Value-based RL learns near deterministic policy!
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Optimal Policies Sometimes Stochastic

Stochastic

(Cannot distinguish gray states, so flip a coin!)
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Likelihood Ratio Policy Gradient

Let τ be state-action s0, u0, . . . , sH , uH . Utility of policy π parametrized by
θ is

U (θ ) =Eπθ ,U

�

H
∑

t

R (st , ut );πθ

�

=
∑

τ

P (τ;θ )R (τ). (2)

Our goal is to find θ :

max
θ

U (θ ) =max
θ

∑

τ

p (τ;θ )R (τ) (3)

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 10 / 14



Likelihood Ratio Policy Gradient

∑

t

p (τ;θ )R (τ) (4)

Taking the gradient wrt θ :

(5)
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Likelihood Ratio Policy Gradient

∑

t

p (τ;θ )R (τ) (4)

Taking the gradient wrt θ :

∇θU (θ ) =
∑

τ

R (τ)
P (τ;θ )
P (τ;θ )

∇θP (τ;θ ) (5)

(6)

Move differentiation inside sum (ignore R (τ) and then add in term that
cancels out
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Likelihood Ratio Policy Gradient

∑

t

p (τ;θ )R (τ) (4)

Taking the gradient wrt θ :

∇θU (θ ) =
∑

τ

R (τ)
P (τ;θ )
P (τ;θ )

∇θP (τ;θ ) (5)

=
∑

τ

P (τ;θ )
∇θP (τ;θ )

P (τ;θ )
R (τ) (6)

(7)

Move derivative over probability
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Likelihood Ratio Policy Gradient

∑

t

p (τ;θ )R (τ) (4)

Taking the gradient wrt θ :

∇θU (θ ) =
∑

τ

R (τ)
P (τ;θ )
P (τ;θ )

∇θP (τ;θ ) (5)

=
∑

τ

P (τ;θ )
∇θP (τ;θ )

P (τ;θ )
R (τ) (6)

=
∑

τ

P (τ;θ )∇θ
�

log P (τ;θ )
�

R (τ) (7)

Assume softmax form (∇θ log z = 1
z∇θ z )
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Likelihood Ratio Policy Gradient

∑

t

p (τ;θ )R (τ) (4)

Taking the gradient wrt θ :

=
∑

τ

P (τ;θ )∇θ
�

log P (τ;θ )
�

R (τ) (5)

Approximate with empirical estimate for m sample paths from π

∇θU (θ )≈
1

m

m
∑

i

∇θ log P (r i ;θ )R (τi ) (6)
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Policy Gradient Intuition

� Increase probability of paths with positive R

� Decrease probability of paths with negagive R
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Extensions

� Consider baseline b (e.g., path averaging)

∇θU (θ )≈
1

m

m
∑

1

∇θ log P (r i ;θ )(R (τi )− b (τ)) (7)

� Combine with value estimation (critic)
� Critic: Updates action-value function parameters
� Actor: Updates policy parameters in direction suggested by critic

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 13 / 14



Recap

� Reinforcement learning is active subfield of ML

� Deep learning option for learning policy / value functions

� Representation learning helps cope with large state spaces

� Still requires careful engineering and feature engineering
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