
Machine Learning

Machine Learning: Jordan Boyd-Graber
University of Maryland
REINFORCEMENT LEARNING

Slides adapted from Tom Mitchell and Peter Abeel

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 1 / 24

Control Learning

Control Learning

Consider learning to choose actions, e.g.,

� Roomba learning to dock on battery charger

� Learning to choose actions to optimize factory output

� Learning to play Backgammon

Note several problem characteristics:

� Delayed reward

� Opportunity for active exploration

� Possibility that state only partially observable

� Possible need to learn multiple tasks with same sensors/effectors

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 2 / 24

Control Learning

One Example: TD-Gammon

[Tesauro, 1995]
Learn to play Backgammon
Immediate reward

� +100 if win

� -100 if lose

� 0 for all other states

Trained by playing 1.5 million games against itself
Now approximately equal to best human player

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 3 / 24

Control Learning

Reinforcement Learning Problem

� At each step t the agent:
� Executes action at
� Receives observation ot
� Receives scalar reward rt

� The environment:
� Receives action at
� Emits observation ot+1
� Emits scalar reward rt+1

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 4 / 24

Control Learning

Reinforcement Learning Problem

Agent

Environment

State Reward Action

r + aa r + r + ... , where a <10 2
2

1

Goal: Learn to choose actions that maximize

0s 1s 2s0a 1a 2a

0r 1r 2r
...

 <0

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 5 / 24

Control Learning

Markov Decision Processes

Assume

� finite set of states S

� set of actions A

� at each discrete time agent observes state st ∈ S and chooses action
at ∈ A

� then receives immediate reward rt

� and state changes to st+1

� Markov assumption: st+1 =δ(st , at) and rt = r (st , at)
� i.e., rt and st+1 depend only on current state and action
� functions δ and r may be nondeterministic
� functions δ and r not necessarily known to agent

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 6 / 24

Control Learning

State

� Experience is a sequence of observations, actions, rewards

o1, r1, a1, . . . , at 1, ot , rt (1)

� The state is a summary of experience

st = f (o1, r1, a1, . . . , at 1, ot , rt) (2)

� In a fully observed environment

st = f (ot) (3)

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 7 / 24

Control Learning

Agent’s Learning Task

Execute actions in environment, observe results, and

� learn action policy π : S → A that maximizes

E
�

rt +γrt+1+γ
2rt+2+ . . .

�

from any starting state in S

� here 0≤ γ< 1 is the discount factor for future rewards

Note something new:

� Target function is π : S → A

� but we have no training examples of form 〈s , a 〉
� training examples are of form 〈〈s , a 〉, r 〉

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 8 / 24

Control Learning

What makes an RL agent?

� Policy: agent’s behaviour function

� Value function: how good is each state and/or action

� Model: agent’s representation of the environment

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 9 / 24

Control Learning

Policy

� A policy is the agent’s behavior
� It is a map from state to action:
� Deterministic policy: a =π(s)
� Stochastic policy: π(a | s) = p (a | s)

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 10 / 24

Q-Learning

Value Function

To begin, consider deterministic worlds . . .
For each possible policy π the agent might adopt, we can define an
evaluation function over states

V π(s) ≡ rt +γrt+1+γ
2rt+2+ ...

≡
∞
∑

i=0

γi rt+i

where rt , rt+1, . . . are from following policy π starting at state s

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 11 / 24

Q-Learning

Q -learning

Restated, the task is to learn the optimal policy π∗

π∗ ≡ arg max
π

V π(s), (∀s)

� r (s , a) (immediate reward) values

G
100

100

0

0

0

0
0

0

0

0
0

0

0

� Q (s , a) values

� One optimal policy

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 12 / 24

Q-Learning

Q -learning

Restated, the task is to learn the optimal policy π∗

π∗ ≡ arg max
π

V π(s), (∀s)

� r (s , a) (immediate reward) values
� Q (s , a) values

G
10090

100

81

90

81
81

90
81

72

72
81

0

� One optimal policy

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 12 / 24

Q-Learning

Q -learning

Restated, the task is to learn the optimal policy π∗

π∗ ≡ arg max
π

V π(s), (∀s)

� r (s , a) (immediate reward) values

� Q (s , a) values

� One optimal policy

G

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 12 / 24

Q-Learning

What to Learn

We might try to have agent learn the evaluation function V π∗ (which we
write as V ∗)
It could then do a lookahead search to choose best action from any state s
because

π∗(s) = arg max
a
[r (s , a) +γV ∗(δ(s , a))]

A problem:

� This works well if agent knows δ : S ×A→ S , and r : S ×A→ℜ
� But when it doesn’t, it can’t choose actions this way

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 13 / 24

Q-Learning

Q Function

Define new function very similar to V ∗

Q (s , a)≡ r (s , a) +γV ∗(δ(s , a))

If agent learns Q , it can choose optimal action even without knowing δ!

π∗(s) = arg max
a
[r (s , a) +γV ∗(δ(s , a))]

π∗(s) = arg max
a

Q (s , a)

Q is the evaluation function the agent will learn

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 14 / 24

Q-Learning

Training Rule to Learn Q

Note Q and V ∗ closely related:

V ∗(s) =max
a ′

Q (s , a ′)

Which allows us to write Q recursively as

Q (st , at) = r (st , at) +γV ∗(δ(st , at)))

= r (st , at) +γmax
a ′

Q (st+1, a ′)

Nice! Let Q̂ denote learner’s current approximation to Q . Consider training
rule

Q̂ (s , a)← r +γmax
a ′

Q̂ (s ′, a ′)

where s ′ is the state resulting from applying action a in state s

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 15 / 24

Q-Learning

Value Function

� A value function is a prediction of future reward: “How much reward will I
get from action a in state s?”

� Q -value function gives expected total reward
� from state s and action a
� under policy π
� with discount factor γ (future rewards mean less than immediate)

Qπ(s , a) =E
�

rt+1+γrt+2+γ
2rt+3+ . . . | s , a

�

(4)

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 16 / 24

Q-Learning

A Value Function is Great!

� An optimal value function is the maximum achievable value

Q ∗(s , a) =max
π

Qπ(s , a) =Qπ∗ (s , a) (5)

� If you know the value function, you can derive policy

π∗ = arg max
a

Q (s , a) (6)

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 17 / 24

Q-Learning

Q Learning for Deterministic Worlds

For each s , a initialize table entry Q̂ (s , a)← 0
Observe current state s
Do forever:

� Select an action a and execute it

� Receive immediate reward r

� Observe the new state s ′

� Update the table entry for Q̂ (s , a) as follows:

Q̂ (s , a)← r +γmax
a ′

Q̂ (s ′, a ′)

� s ← s ′

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 18 / 24

Q-Learning

Updating Q̂

100

81

R
63

72

Initial state: s1

10090

81

R
63

Next state: s2

aright

Q̂ (s1, ar i g h t) ← r +γmax
a ′

Q̂ (s2, a ′)

← 0+0.9 max{63, 81, 100}= 90

if rewards non-negative, then

(∀s , a , n) Q̂n+1(s , a)≥ Q̂n (s , a)

and
(∀s , a , n) 0≤ Q̂n (s , a)≤Q (s , a)

Q̂ converges to Q .

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 19 / 24

Q-Learning

Nondeterministic Case

What if reward and next state are non-deterministic?
We redefine V ,Q by taking expected values

V π(s) ≡ E [rt +γrt+1+γ
2rt+2+ . . .]

≡ E [
∞
∑

i=0

γi rt+i]

Q (s , a)≡ E [r (s , a) +γV ∗(δ(s , a))]

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 20 / 24

Q-Learning

Nondeterministic Case

Q learning generalizes to nondeterministic worlds
Alter training rule to

Q̂n (s , a)← (1−αn)Q̂n−1(s , a) +αn [r +max
a ′

Q̂n−1(s
′, a ′)]

where

αn =
1

1+ visitsn (s , a)

Can still prove convergence of Q̂ to Q [Watkins and Dayan, 1992]

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 21 / 24

Q-Learning

Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates
One step time difference:

Q (1)(st , at)≡ rt +γmax
a

Q̂ (st+1, a)

Why not two steps?

Q (2)(st , at)≡ rt +γrt+1+γ
2 max

a
Q̂ (st+2, a)

Or n?

Q (n)(st , at)≡ rt +γrt+1+ · · ·+γ(n−1)rt+n−1+γ
n max

a
Q̂ (st+n , a)

Blend all of these:

Qλ(st , at)≡ (1−λ)
�

Q (1)(st , at) +λQ (2)(st , at) +λ
2Q (3)(st , at) + · · ·

�

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 22 / 24

Q-Learning

Temporal Difference Learning

Qλ(st , at)≡ (1−λ)
�

Q (1)(st , at) +λQ (2)(st , at) +λ
2Q (3)(st , at) + · · ·

�

Equivalent expression:

Qλ(st , at) = rt +γ[(1−λ)max
a

Q̂ (st , at)

+λQλ(st+1, at+1)]

TD(λ) algorithm uses above training rule

� Sometimes converges faster than Q learning

� converges for learning V ∗ for any 0≤λ≤ 1 (Dayan, 1992)

� Tesauro’s TD-Gammon uses this algorithm

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 23 / 24

Q-Learning

What if the number of states is huge and/or structured?

� Let’s say we discover that state is
bad

� In Q learning, we know nothing
about similar states

� Solution: Feature-based
Representation
� Distance to closest ghost
� Distance to closest dot
� Number of ghosts
� Is Pacman in a tunnel?

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 24 / 24

Q-Learning

What if the number of states is huge and/or structured?

� Let’s say we discover that state is
bad

� In Q learning, we know nothing
about similar states

� Solution: Feature-based
Representation
� Distance to closest ghost
� Distance to closest dot
� Number of ghosts
� Is Pacman in a tunnel?

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 24 / 24

	Control Learning
	Q-Learning

