Machine Learning

Machine Learning: Jordan Boyd-Graber
University of Maryland

Slides adapted from Tom Mitchell and Peter Abeel

Machine Learning: Jordan Boyd-Grab: Machine Learning | 1/

Control Learning

Consider learning to choose actions, e.g.,

= Roomba learning to dock on battery charger
= Learning to choose actions to optimize factory output
= |earning to play Backgammon

Note several problem characteristics:

= Delayed reward

= Opportunity for active exploration

= Possibility that state only partially observable

= Possible need to learn multiple tasks with same sensors/effectors

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 2/24

One Example: TD-Gammon

[Tesauro, 1995]
Learn to play Backgammon
Immediate reward

= +100 if win
= -100 if lose
= (for all other states

Trained by playing 1.5 million games against itself
Now approximately equal to best human player

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 3/24

Reinforcement Learning Problem

observation
= At each step t the agent:
o Executes action a,
o Receives observation o;
o Receives scalar reward r;
= The environment:
o Receives action a,

o Emits observation o,
o Emits scalar reward r,;

Machine Learning: Jordan Boyd-Grabe Machine Learning | 4/

Reinforcement Learning Problem

Agent
State Reward Action
Environment
a a a
0 1 2
S S S
0 >]) .
0 1 2

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 5/24

Markov Decision Processes

Assume
= finite set of states S
= set of actions A

= at each discrete time agent observes state s, € S and chooses action
a; €A
= then receives immediate reward r,

= and state changes to s;;
= Markov assumption: s;,; =0(s;,a,) and r, =r(s;,a;)
o i.e., r; and s;,; depend only on current state and action

o functions 6 and r may be nondeterministic
o functions 6 and r not necessarily known to agent

Jordan Boyd-Graber | UMD Machine Learning | 6/24

State

= Experience is a sequence of observations, actions, rewards
01, 1,01,...,041,0¢, 1y
= The state is a summary of experience
St = f(ol’ n,a,...,as1, 0, rt)
= |n a fully observed environment

s: = f(oy)

Jordan Boyd-Graber | UMD

Machine Learning |

7/

24

Agent’s Learning Task

Execute actions in environment, observe results, and

= |earn action policy 7w : S — A that maximizes
2
E[Tt +}’rt+1 +‘r Tt+2+...]

from any starting state in S
= here 0 <y <1 is the discount factor for future rewards
Note something new:
= Target functionis 71:S— A
= but we have no training examples of form (s, a)

= training examples are of form ((s, a), r)

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 8/24

What makes an RL agent?

= Policy: agent’s behaviour function
= Value function: how good is each state and/or action
= Model: agent’s representation of the environment

Jordan Boyd-Graber | UMD Machine Learning |

Policy

= A policy is the agent’s behavior
o Itis a map from state to action:
o Deterministic policy: a = rt(s)
o Stochastic policy: 7(a|s)=p(als)

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 10/24

Value Function

To begin, consider deterministic worlds . ..
For each possible policy 7t the agent might adopt, we can define an
evaluation function over states

— 2
VT[(S) =rt+yrt+1+7/ rt+2+...
[ee]
EZTlrtH
i=0

where 14, r41,... are from following policy 7 starting at state s

Machine Learning: Jordan Boyd-Graber | Machine Learning | 11/24

Q-learning

Restated, the task is to learn the optimal policy t*

= argmax V7(s),(Vs)

= r(s,a) (immediate reward) values

Q(s, a) values

One optimal policy

Jordan Boyd-Graber | UMD

Machine Learning |

12/24

Q-learning

Restated, the task is to learn the optimal policy 7*

= argmax V7(s),(Vs)

= 7(s,a) (immediate reward) values
= Q(s,a) values

N‘g
Z1y
Hi-—
\j
Hie
o>

Al

sl ¥ ol ¥ ool

A=
[
A s

= One optimal policy

Jordan Boyd-Graber | UMD

Machine Learning | 12/24

Q-learning

Restated, the task is to learn the optimal policy *
w* =argmax V"(s),(Vs)

T

= r(s,a) (immediate reward) values

= Q(s,a) values

= One optimal policy

Jordan Boyd-Graber | UMD

Machine Learning |

12/24

What to Learn

We might try to have agent learn the evaluation function V™" (which we

write as V'*)
It could then do a lookahead search to choose best action from any state s
because
m¥(s)= argmaax[r(s, a)+yV*o(s,a))
A problem:

= This works well if agentknows 0 : SxA—S,and r:SxA— R
= But when it doesn't, it can’t choose actions this way

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 13/24

Q Function

Define new function very similar to V*

Q(s,a)=r(s,a)+yV*(o(s,a))

If agent learns Q, it can choose optimal action even without knowing 6!

m¥(s)= argmuax[r(s, a)+yV*o(s,a))

n*(s)=argmaaxQ(s,a)

Q is the evaluation function the agent will learn

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 14/24

Training Rule to Learn Q
Note Q and V* closely related:

V*(s)=maxQ(s,a’)
al
Which allows us to write Q recursively as

Q(spya;) = r(sp,a)+yVv*(e(s,ar))

r(s;,a.)+ YHZE}XQ(SI?+1’ a’)

Nice! Let Q denote learner’s current approximation to Q. Consider training
rule

Q(s,a)— r+ymaxQ(s’, @)

where s’ is the state resulting from applying action a in state s

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 15/24

Value Function

= A value function is a prediction of future reward: “How much reward will |
get from action a in state s?”

= (Q-value function gives expected total reward
o from state s and action a
o under policy 7

o with discount factor y (future rewards mean less than immediate)

Q”(s,a):]E[rtH+rr,+2+7/2r,+3+... |3»a]

Jordan Boyd-Graber |

UMD

Machine Learning | 16/24

A Value Function is Great!

= An optimal value function is the maximum achievable value
Q*(s,a)=maxQ"(s,a)=Q" (s, a) (5)
= [f you know the value function, you can derive policy

= argmuaxQ(s,a) (6)

Jordan Boyd-Graber | UMD Machine Learning | 17/24

Q Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) — 0
Observe current state s
Do forever:

Select an action a and execute it
= Receive immediate reward r

Observe the new state s’

Update the table entry for Q(s, a) as follows:

Q(s,a) — r+ymaxQ(s’, a’)

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning |

Updating Q

=
|
\/
=
|
Y

a right

Initial state: S, Next state: S,
Qsu,arign) — r+ymaxQ(s,a’)
— 040.9 max{63,81,100} =90

if rewards non-negative, then

(VS,CL, n) én+1(s’a)Z On(S,Ll)

and
Vs,a,n) 0<0Q,(s,a)<Q(s,a)

O converges to Q.

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 19/24

Nondeterministic Case

What if reward and next state are non-deterministic?
We redefine V, Q by taking expected values

V(s) =Elr+7rem+7 0 +...]
o
EE[Z?’iTHi]
i=0

Q(s,a)=E[r(s,a)+yV*((s,a))

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 20/24

Nondeterministic Case

Q learning generalizes to nondeterministic worlds
Alter training rule to

Qnls, @) = (1=,)Qua(s, @)+ ay[r + maxQ, (s, a’)]
where

1

a,=————
" 14 visits, (s, a)

Can still prove convergence of O to Q [Watkins and Dayan, 1992]

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 21/24

Temporal Difference Learning

Q learning: reduce discrepancy between successive () estimates
One step time difference:

QW(s;,a,)=r, + TmaaXQA(StH’ a)
Why not two steps?
Qs a)=r +1rm+7° maaXQ(St+2» a)
Orn?
Qs a)=ri+rr 1" Vg 1" meQ(SHn, a)
Blend all of these:

Q*sp a)=(1 _)L)[Q(U(St, a)+2Q%(s,, a,)+ 22Q¥(s;, a,) + -]

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 22/24

Temporal Difference Learning

Q*(srya)=(1=M[QW (s, @)+ 2Q (s, ar) + A2 Qs @)+
Equivalent expression:

QMspar) =r+yl (1-2)maxQ(s;,a,)

+A QM(sp41,@r11)]

TD(A) algorithm uses above training rule

= Sometimes converges faster than Q learning

= converges for learning V* for any 0 < A <1 (Dayan, 1992)
= Tesauro’s TD-Gammon uses this algorithm

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 23/24

What if the number of states is huge and/or structured?

= |et’s say we discover that state is
bad

= |n Q learning, we know nothing
about similar states

dan Boyd-Graber | UMD Machine Learning | 24/24

What if the number of states is huge and/or structured?

= |et’s say we discover that state is
bad

= |n Q learning, we know nothing
about similar states

= Solution: Feature-based
Representation

Distance to closest ghost
Distance to closest dot
Number of ghosts

Is Pacman in a tunnel?

a

]

[m]

(]

Machine Learning: Jordan Boyd-Graber | UMD Machine Learning | 24/24

	Control Learning
	Q-Learning

