Autoencoders

Machine Learning: Jordan Boyd-Graber
University of Maryland

Machine Learning: Jordan Boyd-Graber |

Autoencoders | 1/6

Problems of Autoencoders

= Unsupervised

o Lots of data

o Need priors / regularization
= Probabilistic loss function

o does not work well for discrete data (more later)
o hard to explain hidden layer probabilistically

Jordan Boyd-Graber | UMD Autoencoders | 2/6

Problems of Autoencoders

= Unsupervised

o Lots of data
o Need priors / regularization

= Probabilistic loss function
o does not work well for discrete data (more later)
o hard to explain hidden layer probabilistically

= So let’s use variational inference

Jordan Boyd-Graber | UMD Autoencoders | 2/6

Loss Function

b4 4
t |
Encoder g{z|x) Decoder p(x|2)
Data: x Reconstruction:
(= _EZNQG(ZlX,') [|ng¢ (Xi | Z)] + KL(qB (Z | Xi) ||p(2)) (1)

» Reconstruction error

= Variational representation
distribution

= Regularization

Autoencoders | 3/6

Machine Learning: Jordan Boyd-Graber | UMD

Loss Function

b4 4
t |
Encoder g{z|x) Decoder p(x|2)
Data: x Reconstruction:
(= _EZNQ9(Z|X,') [Ing(/J (Xi | Z)] + KL(qG (Z | Xi) ||p(2)) (1)

= Reconstruction error

= Variational representation
distribution

= Regularization

Autoencoders | 3/6

Machine Learning: Jordan Boyd-Graber | UMD

Loss Function

b4 4
t |
Encoder g{z|x) Decoder p(x|2)
Data: x Reconstruction:
(= _EZNQG(ZlX,') [Ing(/) (Xi | Z)] + KL(qB (Z | Xi) I p(Z)) (1)

= Reconstruction error

= Variational representation
distribution

= Regularization

Autoencoders | 3/6

Machine Learning: Jordan Boyd-Graber | UMD

Loss Function

b4 4
t |
Encoder g{z|x) Decoder p,(x|2)
f }
Data: x Reconstruction: X
= _Ez~qe(z|x,-) [|ng¢ (Xi | Z)] + KL(QB (z | Xi) ||p(2)) (1)

Interpretation

= Reconstruction error _
= | ower bound on reconstruction of

= Variational representation
P decoder

distribution .)
o = Keep representation constrained

= Regularization o o
= Probabilistic parameterization

Autoencoders | 3/6

Machine Learning: Jordan Boyd-Graber | UMD

Make this Concrete

KL(go (2]x)1lp(2))

q(z|x;): normal distribution with output of NN as mean [variational
distribution)

p(z): standard normal distribution

Decoder p (x| z) depends on model / data:

o Grayscale Image? Bernoulli distribution for each pixel
o Words? Multinomial over vocabulary

Machine Learning: Jordan Boyd-Graber | UMD Autoencoders | 4/6

Make this Concrete

KL(go (2] %)l p(2))

q(z|x;): normal distribution with output of NN as mean [variational
distribution)

p(z): standard normal distribution

Decoder p (x| z) depends on model / data:

o Grayscale Image? Bernoulli distribution for each pixel
o Words? Multinomial over vocabulary

Machine Learning: Jordan Boyd-Graber | UMD Autoencoders | 4/6

Make this Concrete

KL(qo(21x)Ip(2))

q(z|x;): normal distribution with output of NN as mean [variational
distribution)

p(z): standard normal distribution

Decoder p (x| z) depends on model / data:

o Grayscale Image? Bernoulli distribution for each pixel
o Words? Multinomial over vocabulary

Machine Learning: Jordan Boyd-Graber | UMD Autoencoders | 4/6

Variational Inference Story

£(0) =Eqgy(21x) [logpy (xi| 2) | —KL(gp (2] x:) || p(2)) 2)

= Want to optimize py (x| z) (likelihood)
= ELBO remains lower bound
= Difference is KL between variational distribution and p(z)

Machine Learning: Jordan Boyd-Graber | UMD Autoencoders | 5/6

Variational Inference Story

£(0) =Eq,(zx)[logpy (i1 2)]—KL(ga (2] %) 1| p(2)))

Want to optimize py (x| z) (likelihood)

ELBO remains lower bound

Difference is KL between variational distribution and p(z)
Actually simpler than LDA

o No global latent variables (only z)
o Can minibatch the data

Machine Learning: Jordan Boyd-Graber | UMD

Autoencoders | 5/6

Variational Inference Story

£(0) =Eq,(zx)[logpy (i1 2)]—KL(ga (2] %) 1| p(2)))

Want to optimize py (x| z) (likelihood)

ELBO remains lower bound

Difference is KL between variational distribution and p(z)
Actually simpler than LDA

o No global latent variables (only z)
o Can minibatch the data
o But what about ¢ ? (encoder)

Machine Learning: Jordan Boyd-Graber | UMD

Autoencoders | 5/6

Variational EM

= Learn variational parameters

= Update ¢ using supervised backprop

Jordan Boyd-Graber | Autoencoders | 6/6

Variational EM

= Learn variational parameters
= Update ¢ using supervised backprop
= What if x is discrete? (Later)

Jordan Boyd-Graber | UMD Autoencoders | 6/6

