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Variational Inference

Inferring hidden variables
Unlike MCMC:

o Deterministic
o Easy to gauge convergence
o Requires dozens of iterations

Doesn’t require conjugacy

Slightly hairier math
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Setup

= X = Xy., Observations

-

Z = 7., hidden variables

a fixed parameters

Want the posterior distribution

p(z,x|a)

P(le»a)=m
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Motivation

= Can’t compute posterior for many interesting models
GMM (finite)

1. Draw u, ~ A (0,72)
2. For each observation i=1...n:

2.1 Draw z; ~Mult(r)
2.2 Draw x;~ A (i4,02)

= Posterior is intractable for large n, and we might want to add priors

TTee, P(u) T p(20)P(xi | 230 1)

fum sz l_[’k; puk) l—[7:1 p(z)p(xi|zi, p1:k)
)
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Motivation

= Can’t compute posterior for many interesting models
GMM (finite)

1. Draw i, ~ (0, 72)
2. For each observationi=1...n:

2.1 Draw z; ~ Mult(7)
2.2 Draw x;~ A (U, 0%)

= Posterior is intractable for large n, and we might want to add priors

1_11521 p(nuk) H7:1 ,D(Z,')p(X,' | Zj, U1 :K)

Lo 2o Tl PCi) T P(20)P(xi 1 20 p11:)
@)

p(ﬂ1:K’z1:n|X1:n) =

Consider all means
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Motivation

= Can’t compute posterior for many interesting models
GMM (finite)

1. Draw uy ~ A (0,72)
2. For each observation i=1...n:

2.1 Draw z; ~Mult(7)
2.2 Draw x;~ A (i, 02)

= Posterior is intractable for large n, and we might want to add priors

[T P TT7 P(2)p06120t1.6)
P(U1:k Z1:0 | X1:0) = k=1 i=1 i ilZi

- fum sz HI}((:1 puik) l_[7:1 p(z)p(xilzi, p1.x)
2)

Consider all assignments
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Main Idea

= We create a variational distribution over the latent variables

q(z1 :ml V) (3)

= Find the settings of v so that q is close to the posterior

» |f g==p, then this is vanilla EM
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What does it mean for distributions to be close?

= We measure the closeness of distributions using Kullback-Leibler
Divergence

a(2) ]

KL(qllp) =E, [Iog o210
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What does it mean for distributions to be close?

= We measure the closeness of distributions using Kullback-Leibler
Divergence

_ a(2) ]
KL(qllp) =E, [Iog o210
= Characterizing KL divergence
If g and p are high, we're happy
If g is high but p isn’t, we pay a price
If g is low, we don’t care
If KL = 0, then distribution are equal

o O o o
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What does it mean for distributions to be close?

= We measure the closeness of distributions using Kullback-Leibler
Divergence

_ a(2) ]
KL(qllp) =E, [Iog o210
= Characterizing KL divergence
If g and p are high, we're happy
If g is high but p isn’t, we pay a price
If g is low, we don’t care
If KL = 0, then distribution are equal

o O o o

This behavior is often called “mode splitting”: we want a good solution, not
every solution.
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Jensen’s Inequality: Concave Functions and Expectations
log(t-z1+(1—t)-22) .-
>

When f is concave

)log(za) — HEX]) 2E[f(X)]

If you haven’t seen this before, spend fifteen minutes to convince yourself
that it’s true
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Evidence Lower Bound (ELBO)

= Apply Jensen’s inequality on log probability of data

logp(x) =log [ L p(xyZ)]
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Evidence Lower Bound (ELBO)

= Apply Jensen’s inequality on log probability of data

log p(x) =log U ]
zlogU p(x, Z)Q]

Add a term that is equal to one
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Evidence Lower Bound (ELBO)

= Apply Jensen’s inequality on log probability of data

ImMUZMQJMLﬂ]

= - xzM
AWJfL)dA]

=5 |

Take the numerator to create an expectation
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Evidence Lower Bound (ELBO)

= Apply Jensen’s inequality on log probability of data

|ogp(x):|ogi ]
zlogf( @]

(2)
a5 |
E

2E [log p(x,2)] -

qllogq(2)]

Apply Jensen’s equality and use log difference
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Evidence Lower Bound (ELBO)

= Apply Jensen’s inequality on log probability of data

logp(x) =log :sz(X,Z)]
ol [t
ol 2]

>E, [Iog p(x, z)] —E,4[logq(z)]

= Fun side effect: Entropy
= Maximizing the ELBO gives as tight a bound on on log probability
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Evidence Lower Bound (ELBO)

= Apply Jensen’s inequality on log probability of data

logp(x) =log J p(X,Z)]
=log J p(X»Z)?]

ol 2]

>R, [logp(x,z)] —Eq[log q(2)]

= Fun side effect: Entropy
= Maximizing the ELBO gives as tight a bound on on log probability
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Evidence Lower Bound (ELBO)

= Apply Jensen’s inequality on log probability of data

logp(x) =log :sz(X»Z)]
ol [t
ol 2]

>Eq [IOQ p(x, z)] —Eq[logq(z)]

= Fun side effect: Entropy
= Maximizing the ELBO gives as tight a bound on on log probability
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Relation to KL Divergence
= Conditional probability definition

p(z,x)
p(x)

p(zlx) =
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Relation to KL Divergence
= Conditional probability definition

p(z,x)
p(x)

p(zlx) =

= Plug into KL divergence

a(2) ]

KL(q(2) Il p(z] X)) =E4 ['°9 p(z|x)
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Relation to KL Divergence
= Conditional probability definition

p(z,x)
p(x)

p(zlx) =

= Plug into KL divergence

q(2) ]
p(z]x)
=E, [logq(2)] - E, [logp(z]x)]

KL(q(2)llp(z]x)) =Eq [Iog

Break quotient into difference
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Relation to KL Divergence

= Conditional probability definition

plaln) = 222 ®
= Plug into KL divergence
Lz 1) =24 i 2|

=Eq[log g(2)] —Eq[logp(z| x)]
=E, [log g(z)] —Eq[logp(z, x)] +log p(x)

Apply definition of conditional probability
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Relation to KL Divergence

= Conditional probability definition

plaln) = 222) ®
= Plug into KL divergence
KL(q(2)llp(z]x)) =E4 [Iog %]

=Eq[logq(2)] —Eq [logp(z|x)]
=E, [log 9(2)] —Eq [log p(z, x)] +log p(x)
=—(Eq[logp(z,x)] — Eq [log g(2)]) + log p(x)

Reorganize terms
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Relation to KL Divergence

= Conditional probability definition

plaln) = 222 ®
= Plug into KL divergence
KL(q(2)llp(z]x)) =E,4 [log p((ﬁ))() ]

=E4 [log g(2)] —Eq [log p(z| x)]
=E,[log ()] —Eq [log p(z, )] +log p(x)
= —(Eq [log p(z, x)] —Eq [log g(2)]) + log p(x)

= Negative of ELBO (plus constant); minimizing KL divergence is the
same as maximizing ELBO

Material adapted from David Blei | UMD Variational Inference | 9/29



Mean field variational inference

= Assume that your variational distribution factorizes

m

q(z‘I)---)Zm) :l_IQ(Z/) (6)
j=1
= You may want to group some hidden variables together

= Does not contain the true posterior because hidden variables are
dependent
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General Blueprint

Choose q
Derive ELBO

Coordinate ascent of each g;

Repeat until convergence
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Example: Latent Dirichlet Allocation

TOPIC 1 TOPIC2  TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine
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Example: Latent Dirichlet Allocation

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

TOPIC 1 TOPIC 2

Forget the Bootleg, Just
Download the Movie Legally

TOPIC 3
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Example: Latent Dirichlet Allocation

computer,
technology,
system,
service, site,
phone,
internet,
machine

Hol@Vood stu@s are preparing to let people
dowTyad and ) elec@pic ca(Ds of m@jes over
the Iet, much as re.d la's now S(.s for
99 q@ys through ATle Comdyer's iITymys m@ic siy
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LDA Generative Model

M

= For each topic k € {1,..., K}, a multinomial distribution S
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LDA Generative Model

®),
(@) o)tz -w),,

= For each topic k € {1,..., K}, a multinomial distribution S
= For each document d € {1,..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter o
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LDA Generative Model

®),
(@) o)tz -w),,

= For each topic k € {1,..., K}, a multinomial distribution S

= For each document d € {1,..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter o

= For each word position ne {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 6.
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LDA Generative Model

®),
(@) o)tz -w),,

For each topic k € {1, ..., K}, a multinomial distribution S

For each document d € {1,..., M}, draw a multinomial distribution 6,
from a Dirichlet distribution with parameter o

For each word position ne {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 6.

Choose the observed word w,, from the distribution 3, .
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LDA Generative Model

(D)),

= For each topic k € {1,..., K}, a multinomial distribution S

= For each document d € {1,..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter a

= For each word position ne {1,..., N}, select a hidden topic z, from the
multinomial distribution parameterized by 6.

= Choose the observed word w,, from the distribution 3 .
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Deriving Variational Inference for LDA

Joint distribution:

p(0,z,wla,B)=] [p(0sl@)] [P(2anl0a)P(Wanl B,2a)  (7)
d n
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Deriving Variational Inference for LDA

Joint distribution:

p(0,z,wla,B)=] [p(0sl@)] [P(2anl 0a)P(Wen B,2a)  (7)
d n

p(0y1a) = ')]_[k 6% (Dirichlet)
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Deriving Variational Inference for LDA

Joint distribution:

p(0,z,wla,B)=] [p(0sl@)] [P(zanl0)P(Wen B,2a)  (7)
d n

p(0gla)= ]r‘izrl((;)l_[k 05" (Dirichlet)

* p(24,0|04) = 04,2, , (Draw from Multinomial)
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Deriving Variational Inference for LDA

Joint distribution:

p(0,z,wla,B)= l_[P(ad|a)l_[P(Zd,n| 04)p( Wyl B, 24,n) (7)
d n

p(04]a) = ]r‘izrl((;)l_[k 6% (Dirichlet)
* p(24,0|04) = 04,2, (Draw from Multinomial)

» p(WynlB)24) = Bz, w,, (Draw from Multinomial)
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Deriving Variational Inference for LDA

Joint distribution:

p(0,z,wla,B)=] [p(0sl@)] [P(zanl 0a)P(Wenl B,2an)  (7)

d

Variational distribution:

q(0,z)=q(017)a(z|9) (8)
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Deriving Variational Inference for LDA
Joint distribution:

p(6,z,wla,B) =] |p(6al@)] [ P(zanl6a)P(Wenl B,24n)  (7)
d n

Variational distribution:

9(0,2)=q(017)a(z19) 8)
ELBO:
L(r,¢:a,B)=Eqlogp(0 |a)]+E4[logp(z]0)] +E4[logp(wz, B)]
—Eq [log q(0 )] —E, [log Q(z)] 9)
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What is the variational distribution?

q(0,2)=] Ja(0alra) ] Ja(zanl Pan) (10)

d

= Variational document distribution over topics 74
o Vector of length K for each document
o Non-negative
o Doesn’t sumto 1.0
= Variational token distribution over topic assignments ¢ ,

o Vector of length K for every token
o Non-negative, sums to 1.0
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Expectation of log Dirichlet

= Most expectations are straightforward to compute
= Dirichlet is harder

Egir [logp(6; | a)] :‘I’(ai)—‘l’(za/) (11)

i
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Expectation 1

E, [logp(6 | a)] :Eq[log{%neﬁf“” (12)
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Expectation 1

]Eq[|°gp(9|(1)]Z]Eq[log{lll(lzr(zl)]_[ g H o
Eq[log{lr-(lzr’ ’3}+Z|oge"f ]

(13)

Log of products becomes sum of logs.
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Expectation 1

E, [logp(6 | )] :Eq[log {% ]j[evfﬁ*1 }] (12)
:IogI‘(Z a,)—ng I(a) +E, [Z(a,-— 1)log 9/]

(13)

Log of exponent becomes product, expectation of constant is constant
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Expectation 1

E, [logp(6 | )] =E [log{l—(lzra)]_[(?, H (12)
oo i + o0t
:|ogr(Za,)—Zlogl‘(a,-)+Eq[2(a,—1)logﬁ,]
:IogF(Za/)—Zlogf(af)

+Z<af-1>(w<yi>—w(;r,.))

Expectation of log Dirichlet
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Expectation 2

E,[logp(z|0)] =E,

log ]_[]_[ 9“2"—"]] (13)
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Expectation 2

Eq[logp(z]6)] =E,

Iogl_[l_[ 0“[2"“’]] (13)
—E, ZZ log 6 [Z"::’]] (14)

Products to sums
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Expectation 2

Eq[logp(z]0)] =E,

log l_l l_l 91[2”__']1 (13)

=Eq[ > > log 0,1[2"::’]l (14)
=" Eq[log 8, =] (15)

(16)

Linearity of expectation
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Expectation 2

E,[logp(z]0)] =E,

log ]_[]_[ 9“2"“’11 (13)

=E, ZZ log HII[Z"ZII]] (14)
=SS E,[l0g 0, =] (15)
:ZZ P g [log 0] (16)

Independence of variational distribution, exponents become products

Material adapted from David Blei | UMD Variational Inference | 18/29



Expectation 2

Eq[logp(z]0)] =Eq

log l_[l_[ 01[2”::']l (13)

=Eo| > log 9,?1[2":"1] (14)

=" E,[i0g6, ] (15)

:ZZ P niEq[log 6] (16)

:qusn,(wn)—w(&)) (17)
no J

Expectation of log Dirichlet
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Expectation 3

Eq[logp(w|z, B)] =E4[log s, w,,] (18)
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Expectation 3

Eq[logp(w|z, )] =E [Iogﬁzdn,wdn] (18)
Iogl_ll_lﬁﬂ[v_wd"zd"_l] (19)
(20)
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Expectation 3

Eq[logp(w|z, B)] :Eq[logﬁzd,mwd,n] (18)

vV K
I{v=wy ,,z4,=i
ey T T ™
v o

V K
:ZZEq []l [V = Wda,n Zan = ’]] log ﬂi,v (20)
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Expectation 3

Eqllogp(w|z, 8)] =Eq[log Bz, , w,,] (18)

vV K
Tlv= n ,n:'
=Eq|log[ [[ ]2~ (19)
v o

q []1 [V =Wy n Zgn = ’]] log ﬂi,v (20)

ni%y 109 Biy (21)

ek
X
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Entropies

Entropy of Dirichlet

H, [y] =—logT (Z r,-) + ,logI(r))
—Z(r,-—1)(\1’(r,-)—\11(27/))

1
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Entropies

Entropy of Dirichlet

H, [7] :—Iogr(er)+Zlogr(rf)
—Z(r,-—ﬂ(\l’(rf)—\I’(Zr/))

1

Entropy of Multinomial

Hg[@g,n] = —Z Dd,nil0g Py n,i (22)
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Complete objective function

k

k
L(y,;0,B) =1logT (T5_, o) — ¥, logT(et) + 3 (o6 — 1) (F(y:) — ¥ (25, 7))
i=1

i=1

N k
+ 33 6w (P0n) — ¥ (T, 1))

n=li=1

N k¥
+ 2 2 3, iy loghy

n=li=1 j=1

3 k
—logl" (Z5_,v;) + Y log () — (v — 1) (¥(1) — ¥ (251 77))

i=1 i=1

&
E ¢'m’ I-Og ¢‘m’ '

l1i=1

M'a.

Note the entropy terms at the end (negative sign)
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Deriving the algorithm

= Compute partial wrt to variable of interest
= Set equal to zero
= Solve for variable
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Update for ¢

Derivative of ELBO:

0¥
a¢ni

:‘IJ(TI)_\I’(ZW)+|Ogﬁi,v_|09¢ni_1 +A (23)
J

Solution:

¢ni c></3,-vexp (qj (71)_@(27/1)) (24)
J
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Update for y

Derivative of ELBO:

oY

57’: =0’ (TI) (a/+¢n/ )

— (Zyj)zj: (a,+zn:¢,,j—y,)
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Update for y

Derivative of ELBO:

oY

57, =0’ (TI) (a +@ni— )

—v (Zr,)zj: (a,-+Z¢n,-—r,-)
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Update for y

Derivative of ELBO:

o«

= (v, . v
5, =V (1) (@ 9=

—‘I’/(ZV/)Z (aﬁzn:%—ﬂ)

Solution:

Yi= ai+z¢ni (25)
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Update for

Slightly more complicated (requires Lagrange parameter), but solution is

obvious: _
Bi o< DD Danith, (26)
d n

Material adapted from David Blei | UMD Variational Inference | 25/29



Overall Algorithm

1. Randomly initialize variational parameters (can’t be uniform)
2. For each iteration:

2.1 For each document, update y and ¢
2.2 For corpus, update f3
2.3 Compute & for diagnostics

3. Return expectation of variational parameters for solution to latent
variables
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Relationship with Gibbs Sampling

Gibbs sampling: sample from the conditional distribution of all other
variables

Variational inference: each factor is set to the exponentiated log of the
conditional

Variational is easier to parallelize, Gibbs faster per step

Gibbs typically easier to implement
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Implementation Tips

= Match derivation exactly at first
= Randomize initialization, but specify seed
= Use simple languages first
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Implementation Tips
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= Randomize initialization, but specify seed
= Use simple languages first ... then match implementation
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Implementation Tips

Match derivation exactly at first

Randomize initialization, but specify seed

Use simple languages first . .. then match implementation

Try to match variables with paper

Write unit tests for each atomic update

Monitor variational bound (with asserts)
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Implementation Tips

= Match derivation exactly at first

= Randomize initialization, but specify seed

= Use simple languages first ... then match implementation
= Try to match variables with paper

= Write unit tests for each atomic update

= Monitor variational bound (with asserts)

= Write the state (checkpointing and debugging)

= Visualize variational parameters
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Implementation Tips

= Match derivation exactly at first

= Randomize initialization, but specify seed

= Use simple languages first ... then match implementation
= Try to match variables with paper

= Write unit tests for each atomic update

= Monitor variational bound (with asserts)

= Write the state (checkpointing and debugging)

= Visualize variational parameters

= Cache / memoize gamma / digamma functions
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Next class

= Example on toy LDA problem

= Current research in variational inference
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