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Variational Inference

� Inferring hidden variables
� Unlike MCMC:
� Deterministic
� Easy to gauge convergence
� Requires dozens of iterations

� Doesn’t require conjugacy

� Slightly hairier math
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Setup

� ~x = x1:n observations

� ~z = z1:m hidden variables

� α fixed parameters

� Want the posterior distribution

p(z |x ,α) =
p(z,x |α)
∫

z p(z,x |α)
(1)

Material adapted from David Blei | UMD Variational Inference | 3 / 29



Motivation

� Can’t compute posterior for many interesting models

GMM (finite)

1. Draw µk ∼N (0,τ2)
2. For each observation i = 1 . . .n:

2.1 Draw zi ∼Mult(π)
2.2 Draw xi ∼N (µzi

,σ2
0)

� Posterior is intractable for large n, and we might want to add priors

p(µ1:K ,z1:n |x1:n) =

∏K
k=1 p(µk)

∏n
i=1 p(zi)p(xi |zi ,µ1:K )

∫

µ1:K

∑

z1:n

∏K
k=1 p(µk)

∏n
i=1 p(zi)p(xi |zi ,µ1:K )

(2)
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Main Idea

� We create a variational distribution over the latent variables

q(z1:m |ν) (3)

� Find the settings of ν so that q is close to the posterior

� If q == p, then this is vanilla EM
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What does it mean for distributions to be close?

� We measure the closeness of distributions using Kullback-Leibler
Divergence

KL(q ||p)≡Eq

�

log
q(Z)

p(Z |x)

�

(4)

� Characterizing KL divergence
� If q and p are high, we’re happy
� If q is high but p isn’t, we pay a price
� If q is low, we don’t care
� If KL = 0, then distribution are equal

This behavior is often called “mode splitting”: we want a good solution, not
every solution.
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Jensen’s Inequality: Concave Functions and Expectations

log(t · x1 + (1 � t) · x2)

t log(x1) + (1 � t) log(x2)

x1 x2

When f is concave

f (E [X ])≥E [f (X)]

If you haven’t seen this before, spend fifteen minutes to convince yourself
that it’s true
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Evidence Lower Bound (ELBO)

� Apply Jensen’s inequality on log probability of data

logp(x) = log

�∫

z

p(x ,z)

�
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Evidence Lower Bound (ELBO)

� Apply Jensen’s inequality on log probability of data

logp(x) = log

�∫

z

p(x ,z)

�

= log

�∫

z

p(x ,z)
q(z)

q(z)

�

Add a term that is equal to one
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Evidence Lower Bound (ELBO)

� Apply Jensen’s inequality on log probability of data

logp(x) = log

�∫

z

p(x ,z)

�

= log

�∫

z

p(x ,z)
q(z)

q(z)

�

= log

�

Eq

�

p(x ,z)

q(z)

��

Take the numerator to create an expectation
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Evidence Lower Bound (ELBO)

� Apply Jensen’s inequality on log probability of data

logp(x) = log

�∫

z

p(x ,z)

�

= log

�∫

z

p(x ,z)
q(z)

q(z)

�

= log

�

Eq

�

p(x ,z)

q(z)

��

≥Eq [logp(x ,z)]−Eq [logq(z)]

Apply Jensen’s equality and use log difference
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Evidence Lower Bound (ELBO)
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� Fun side effect: Entropy
� Maximizing the ELBO gives as tight a bound on on log probability
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Relation to KL Divergence

� Conditional probability definition

p(z |x) =
p(z,x)

p(x)
(5)

� Plug into KL divergence

KL(q(z) ||p(z |x)) =Eq

�

log
q(z)

p(z |x)

�

� Negative of ELBO (plus constant); minimizing KL divergence is the
same as maximizing ELBO
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Relation to KL Divergence

� Conditional probability definition

p(z |x) =
p(z,x)

p(x)
(5)

� Plug into KL divergence

KL(q(z) ||p(z |x)) =Eq

�

log
q(z)

p(z |x)

�

=Eq [logq(z)]−Eq [logp(z |x)]

� Negative of ELBO (plus constant); minimizing KL divergence is the
same as maximizing ELBO

Break quotient into difference

Material adapted from David Blei | UMD Variational Inference | 9 / 29



Relation to KL Divergence

� Conditional probability definition

p(z |x) =
p(z,x)

p(x)
(5)

� Plug into KL divergence

KL(q(z) ||p(z |x)) =Eq

�

log
q(z)

p(z |x)

�

=Eq [logq(z)]−Eq [logp(z |x)]
=Eq [logq(z)]−Eq [logp(z,x)]+ logp(x)

� Negative of ELBO (plus constant); minimizing KL divergence is the
same as maximizing ELBO

Apply definition of conditional probability
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Relation to KL Divergence

� Conditional probability definition

p(z |x) =
p(z,x)

p(x)
(5)

� Plug into KL divergence

KL(q(z) ||p(z |x)) =Eq

�

log
q(z)

p(z |x)

�

=Eq [logq(z)]−Eq [logp(z |x)]
=Eq [logq(z)]−Eq [logp(z,x)]+ logp(x)

=−
�

Eq [logp(z,x)]−Eq [logq(z)]
�

+ logp(x)

� Negative of ELBO (plus constant); minimizing KL divergence is the
same as maximizing ELBO

Reorganize terms
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Mean field variational inference

� Assume that your variational distribution factorizes

q(z1, . . . ,zm) =
m
∏

j=1

q(zj) (6)

� You may want to group some hidden variables together

� Does not contain the true posterior because hidden variables are
dependent
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General Blueprint

� Choose q

� Derive ELBO

� Coordinate ascent of each qi

� Repeat until convergence
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Example: Latent Dirichlet Allocation

computer, 
technology, 

system, 
service, site, 

phone, 
internet, 
machine

play, film, 
movie, theater, 

production, 
star, director, 

stage

sell, sale, 
store, product, 

business, 
advertising, 

market, 
consumer

TOPIC 1 TOPIC 2 TOPIC 3
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Example: Latent Dirichlet Allocation

Forget the Bootleg, Just 
Download the Movie Legally

Multiplex Heralded As 
Linchpin To Growth

The Shape of Cinema, 
Transformed At the Click of 

a Mouse

A Peaceful Crew Puts 
Muppets Where Its Mouth Is

Stock Trades: A Better Deal 
For Investors Isn't Simple

The three big Internet 
portals begin to distinguish 

among themselves as 
shopping mallsRed Light, Green Light: A 

2-Tone L.E.D. to 
Simplify Screens

TOPIC 2

TOPIC 3

TOPIC 1

Material adapted from David Blei | UMD Variational Inference | 12 / 29



Example: Latent Dirichlet Allocation

Hollywood studios are preparing to let people 

download and buy electronic copies of movies over 

the Internet, much as record labels now sell songs for 

99 cents through Apple Computer's iTunes music store 

and other online services ...

computer, 
technology, 

system, 
service, site, 

phone, 
internet, 
machine

play, film, 
movie, theater, 

production, 
star, director, 

stage

sell, sale, 
store, product, 

business, 
advertising, 

market, 
consumer
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LDA Generative Model

MN
θd zn wn

K
βk

α

� For each topic k ∈ {1, . . . ,K }, a multinomial distribution βk

� For each document d ∈ {1, . . . ,M}, draw a multinomial distribution θd

from a Dirichlet distribution with parameter α
� For each word position n ∈ {1, . . . ,N}, select a hidden topic zn from the

multinomial distribution parameterized by θ .
� Choose the observed word wn from the distribution βzn

.
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LDA Generative Model

MN
θd zn wn

K
βk

α

� For each topic k ∈ {1, . . . ,K }, a multinomial distribution βk
� For each document d ∈ {1, . . . ,M}, draw a multinomial distribution θd

from a Dirichlet distribution with parameter α
� For each word position n ∈ {1, . . . ,N}, select a hidden topic zn from the

multinomial distribution parameterized by θ .
� Choose the observed word wn from the distribution βzn

.

Statistical inference uncovers most unobserved variables given data.
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Deriving Variational Inference for LDA

Joint distribution:

p(θ ,z,w |α,β) =
∏

d

p(θd |α)
∏

n

p(zd ,n |θd)p(wd ,n |β ,zd ,n) (7)

� p(θd |α) =
Γ (
∑

i αi)
∏

i Γ (αi)

∏

k θ
αk−1
d ,k (Dirichlet)

� p(zd ,n |θd) = θd ,zd ,n
(Draw from Multinomial)

� p(wd ,n |β ,zd ,n) =βzd ,n,wd ,n
(Draw from Multinomial)
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Deriving Variational Inference for LDA

Joint distribution:

p(θ ,z,w |α,β) =
∏

d

p(θd |α)
∏

n

p(zd ,n |θd)p(wd ,n |β ,zd ,n) (7)

� p(θd |α) =
Γ (
∑

i αi)
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i Γ (αi)

∏

k θ
αk−1
d ,k (Dirichlet)

� p(zd ,n |θd) = θd ,zd ,n
(Draw from Multinomial)

� p(wd ,n |β ,zd ,n) =βzd ,n,wd ,n
(Draw from Multinomial)

Variational distribution:

q(θ ,z) = q(θ |γ)q(z |φ) (8)

ELBO:

L(γ,φ;α,β) =Eq [logp(θ |α)]+Eq [logp(z |θ )]+Eq [logp(w |z,β)]

−Eq [logq(θ )]−Eq [logq(z)] (9)
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What is the variational distribution?

q( ~θ ,~z) =
∏

d

q(θd |γd)
∏

n

q(zd ,n |φd ,n) (10)

� Variational document distribution over topics γd
� Vector of length K for each document
� Non-negative
� Doesn’t sum to 1.0

� Variational token distribution over topic assignments φd ,n
� Vector of length K for every token
� Non-negative, sums to 1.0
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Expectation of log Dirichlet

� Most expectations are straightforward to compute

� Dirichlet is harder

Edir [logp(θi |α)] =Ψ (αi)−Ψ

�

∑

j

αj

�

(11)
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Expectation 1

Eq [logp(θ |α)] =Eq

�

log

�

Γ (
∑

i αi)
∏

i Γ (αi)

∏

i

θ αi−1
i

��

(12)

(13)
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Expectation 1

Eq [logp(θ |α)] =Eq

�

log

�

Γ (
∑

i αi)
∏

i Γ (αi)

∏

i

θ αi−1
i

��

(12)

=Eq

�

log

�

Γ (
∑

i αi)
∏

i Γ (αi)

�

+
∑

i

logθ αi−1
i

�

(13)

Log of products becomes sum of logs.
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Expectation 1

Eq [logp(θ |α)] =Eq

�

log

�

Γ (
∑

i αi)
∏

i Γ (αi)

∏

i

θ αi−1
i

��

(12)

=Eq

�

log

�

Γ (
∑

i αi)
∏

i Γ (αi)

�

+
∑

i

logθ αi−1
i

�

= logΓ (
∑

i

αi)−
∑

i

logΓ (αi)+Eq

�

∑

i

(αi −1) logθi

�

(13)

Log of exponent becomes product, expectation of constant is constant
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Expectation 1

Eq [logp(θ |α)] =Eq

�

log

�

Γ (
∑

i αi)
∏

i Γ (αi)

∏

i

θ αi−1
i

��

(12)

=Eq

�

log

�

Γ (
∑

i αi)
∏

i Γ (αi)

�

+
∑

i

logθ αi−1
i

�

= logΓ (
∑

i

αi)−
∑

i

logΓ (αi)+Eq

�

∑

i

(αi −1) logθi

�

= logΓ (
∑

i

αi)−
∑

i

logΓ (αi)

+
∑

i

(αi −1)

�

Ψ (γi)−Ψ

�

∑

j

γj

��

Expectation of log Dirichlet
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Expectation 2

Eq [logp(z |θ )] =Eq

�

log
∏

n

∏

i

θ
1[zn==i]
i

�

(13)

(14)
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Expectation 2

Eq [logp(z |θ )] =Eq

�

log
∏

n

∏

i

θ
1[zn==i]
i

�

(13)

=Eq

�

∑

n

∑

i

logθ
1[zn==i]
i

�

(14)

(15)

Products to sums
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Expectation 2

Eq [logp(z |θ )] =Eq

�

log
∏

n

∏

i

θ
1[zn==i]
i

�

(13)

=Eq

�

∑

n

∑

i

logθ
1[zn==i]
i

�

(14)

=
∑

n

∑

i

Eq

�

logθ
1[zn==i]
i

�

(15)

(16)

Linearity of expectation
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Expectation 2

Eq [logp(z |θ )] =Eq

�

log
∏

n

∏

i

θ
1[zn==i]
i

�

(13)

=Eq

�

∑

n

∑

i

logθ
1[zn==i]
i

�

(14)

=
∑

n

∑

i

Eq

�

logθ
1[zn==i]
i

�

(15)

=
∑

n

∑

i

φniEq [logθi ] (16)

(17)

Independence of variational distribution, exponents become products
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∑
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�
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∑
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Expectation of log Dirichlet
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Expectation 3

Eq [logp(w |z,β)] =Eq

�

logβzd ,n,wd ,n

�

(18)

(19)
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Entropies

Entropy of Dirichlet

Hq [γ] =− logΓ

�

∑

j

γj

�

+
∑

i

logΓ (γi)

−
∑

i

(γi −1)

�

Ψ (γi)−Ψ

�

k
∑

j=1

γj

��

Entropy of Multinomial

Hq [φd ,n] =−
∑

i

φd ,n,i logφd ,n,i (22)
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Complete objective function

Note the entropy terms at the end (negative sign)
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Deriving the algorithm

� Compute partial wrt to variable of interest

� Set equal to zero

� Solve for variable
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Update for φ

Derivative of ELBO:

∂L
∂ φni

=Ψ (γi)−Ψ

�

∑

j

γj

�

+ logβi ,v − logφni −1+λ (23)

Solution:

φni ∝βiv exp

�

Ψ (γi)−Ψ

�

∑

j

γj

��

(24)
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Update for γ

Derivative of ELBO:

∂L
∂ γi

=Ψ′ (γi) (αi +φn,i −γi)

−Ψ′
�

∑

j

γj

�

∑

j

�

αj +
∑

n

φnj −γj

�
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Update for γ

Derivative of ELBO:

∂L
∂ γi

=Ψ′ (γi) (αi +φn,i −γi)

−Ψ′
�

∑

j

γj

�

∑

j

�

αj +
∑

n

φnj −γj

�

Solution:
γi =αi +

∑

n

φni (25)
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Update for β

Slightly more complicated (requires Lagrange parameter), but solution is
obvious:

βij ∝
∑

d

∑

n

φdniw
j
dn (26)
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Overall Algorithm

1. Randomly initialize variational parameters (can’t be uniform)

2. For each iteration:
2.1 For each document, update γ and φ
2.2 For corpus, update β
2.3 ComputeL for diagnostics

3. Return expectation of variational parameters for solution to latent
variables
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Relationship with Gibbs Sampling

� Gibbs sampling: sample from the conditional distribution of all other
variables

� Variational inference: each factor is set to the exponentiated log of the
conditional

� Variational is easier to parallelize, Gibbs faster per step

� Gibbs typically easier to implement
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Implementation Tips

� Match derivation exactly at first

� Randomize initialization, but specify seed

� Use simple languages first

. . . then match implementation

� Try to match variables with paper

� Write unit tests for each atomic update

� Monitor variational bound (with asserts)

� Write the state (checkpointing and debugging)

� Visualize variational parameters

� Cache / memoize gamma / digamma functions

Material adapted from David Blei | UMD Variational Inference | 28 / 29



Implementation Tips

� Match derivation exactly at first

� Randomize initialization, but specify seed

� Use simple languages first . . . then match implementation

� Try to match variables with paper

� Write unit tests for each atomic update

� Monitor variational bound (with asserts)

� Write the state (checkpointing and debugging)

� Visualize variational parameters

� Cache / memoize gamma / digamma functions

Material adapted from David Blei | UMD Variational Inference | 28 / 29



Implementation Tips

� Match derivation exactly at first

� Randomize initialization, but specify seed

� Use simple languages first . . . then match implementation

� Try to match variables with paper

� Write unit tests for each atomic update

� Monitor variational bound (with asserts)

� Write the state (checkpointing and debugging)

� Visualize variational parameters

� Cache / memoize gamma / digamma functions

Material adapted from David Blei | UMD Variational Inference | 28 / 29



Implementation Tips

� Match derivation exactly at first

� Randomize initialization, but specify seed

� Use simple languages first . . . then match implementation

� Try to match variables with paper

� Write unit tests for each atomic update

� Monitor variational bound (with asserts)

� Write the state (checkpointing and debugging)

� Visualize variational parameters

� Cache / memoize gamma / digamma functions

Material adapted from David Blei | UMD Variational Inference | 28 / 29



Implementation Tips

� Match derivation exactly at first

� Randomize initialization, but specify seed

� Use simple languages first . . . then match implementation

� Try to match variables with paper

� Write unit tests for each atomic update

� Monitor variational bound (with asserts)

� Write the state (checkpointing and debugging)

� Visualize variational parameters

� Cache / memoize gamma / digamma functions

Material adapted from David Blei | UMD Variational Inference | 28 / 29



Next class

� Example on toy LDA problem

� Current research in variational inference
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