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Clustering as Probabilistic Inference

� GMM is a probabilistic model (unlike K -means)
� There are several latent variables:
� Means
� Assignments
� (Variances)

� Before, we were doing EM

� Today, new models and new methods
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Nonparametric Clustering

� What if the number of clusters is not fixed?

� Nonparametric: can grow if data need it

� Probabilistic distribution over number of clusters
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Dirichlet Process

� Distribution over distributions

� Parameterized by: α,G

� Concentration parameter

� Base distribution

� You can then draw observations from x ∼DP(α,G).
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Defining a DP

� Break off sticks

V1,V2, · · · ∼iidBeta(1,α) (1)

Ck ≡Vk

k−1
∏

j=1

(1−Vj) (2)

� Draw atoms

� Merge into complete distribution
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Properties of a DPMM

� Expected value is the same as base distribution

EDP(α,G) [x] =EG [x] (3)

� As α→∞, DP(α,G) =G

� Number of components unbounded

� Impossible to represent fully on computer (truncation)

� You can nest DPs
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Effect of scaling parameter α
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DP as mixture Model
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The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit down at a
table proportional to the number of people sitting at the table.

2
7

3
7

2
7

x ∼µ1 x ∼µ2 x ∼µ3

But this is just Maximum Likelihood

Why are we talking about Chinese Restaurants?
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Always can squeeze in one more table . . .

� The posterior of a DP is CRP

� A new observation has a new table / cluster with probability proportional
to α

� But this must be balanced against the probability of an observation
given a cluster
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Gibbs Sampling

� We want to know the cluster assignment of each observation

� Take a random guess initially

� This provides a mean for each cluster

� Let the number of clusters grow
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Gibbs Sampling

� We want to know the cluster assignment of each observation (tables)

� Take a random guess initially

� This provides a mean for each cluster

� Let the number of clusters grow
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Gibbs Sampling

� We want to know ~z

� Compute p(zi |z1 . . .zi−1,zi+1, . . .zm,x ,α,G)

� Update zi by sampling from that distribution

� Keep going . . .

Notation

p(zi = k |z−i)≡ p(zi |z1 . . .zi−1,zi+1, . . .zm) (4)
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Gibbs Sampling for DPMM

p(zi = k |~z−i ,~x ,{θk},α) (5)

(6)
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Gibbs Sampling for DPMM

p(zi = k |~z−i ,~x ,{θk},α) (5)

=p(zi = k |~z−i ,xi ,~x ,θk ,α) (6)

(7)

Dropping irrelevant terms
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Gibbs Sampling for DPMM

p(zi = k |~z−i ,~x ,{θk},α) (5)

=p(zi = k |~z−i ,xi ,~x ,θk ,α) (6)

=p(zi = k |~z−i ,α)p(xi |θk ,~x) (7)

(8)

Chain rule
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Gibbs Sampling for DPMM

p(zi = k |~z−i ,~x ,{θk},α) (5)

=p(zi = k |~z−i ,xi ,~x ,θk ,α) (6)

=p(zi = k |~z−i ,α)p(xi |θk ,~x) (7)

=

¨
�

nk
n·+α

�

∫

θ
p(xi |θ )p(θ |G,~x) existing

α
n·+α

∫

θ
p(xi |θ )p(θ |G) new

(8)

(9)

Applying CRP
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=

¨
�

nk
n·+α

�

N
�

x , nx̄
n+1 ,1

�

existing
α

n·+α
N (x ,0,1) new

(9)

Scary integrals assuming G is normal distribution with mean zero and unit
variance. (Derived in optional reading.)
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Algorithm for Gibbs Sampling

1. Random initial assignment to clusters

2. For iteration i :
2.1 “Unassign” observation n
2.2 Choose new cluster for that observation
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Toy Example
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Toy Example
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Toy Example

New cluster created!
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Toy Example
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Toy Example

And repeat . . .
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Differences between EM and Gibbs

� Gibbs often faster to implement

� EM easier to diagnose convergence

� EM can be parallelized

� Gibbs is more widely applicable
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In class and next week

� Walking through DPMM clustering

� Clustering discrete data with more than one cluster per observation
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