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Lecture for Today

= What is clustering?
= K-Means
= Gaussian Mixture Models
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Clustering

Classification: what is label of new

Clustering: how should we group these

point? points?
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Clustering: what about this?
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Clustering

Uses:

genomics

medical imaging

social network analysis
recommender systems
market segmentation

voter analysis
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Microarray Gene Expression Data
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From: “Skin layer-specific transcriptional profiles in normal and recessive yellow (Mc1re/Mc1re) mice” by April and Barsh in Pigment Cell

Research (2006)
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Medical Imaging (MRIs and PET scans)
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From: “Fluorodeoxyglucose positron emission tomography of mild cognitive impairment with clinical follow-up at 3 years” by Pardo et al. in
Alzheimer’s and Dementia (2010)
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Social Networks

Twitter Social Network, 20K nodes 250K edges

Forecast
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Recommender Systems

Backend Algorithms of
ShowGraph2013

User Watch Show Relationship Table

Behavior
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From: tech.hulu.com/blog/
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Market Segmentation

Segment: Milk and Cookies
Life Stage: Family Portrait
Primary Housing: Single Family
Primary Family Type: MC with Children
Average HH Size: 3
Median Age: 32.7

Madian incomae: 55300

Segment: Aspiring Young Families.
Life Stage: High Hopes.

Primary Housing: MultiUnit, Single Family
Primary Famity Type: Family Mix
Average HH Size: 2.6
Median Age: 29.8
Median Income: 44300

Life Stage: Upscale Avenues
Primary Housing: Single Family
Primary Family Type: Married Couj
Average HH Size: 2.8

Median Age:39.1
Median Income: 60000

Segment: Cozy and Comfortabl
Life Stage: Upscale Avenues|
Primary Housing: Single Famil
Primary Family Type: Married Cou
Average HH Sizo: 2.6
Madian Ago: 40.2
Madian Income: 58900

From: mappinganalytics.com/map/segmentation-maps/segmentation-map.html
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Prosparous Empty Nostor
ife Stage: Senior Styles

Average HH Size: 2.4
Median Age: 46.1
Median Income: 64100

Segment: Young and Resthess
Life Stage: Soko Acts
Primary Housing: Multi-Units.

Median Income: 38000

ent: Industrious Urban Fringe
Life Stage: Gliobal Roots
Primary Housing: Single Family
Primary Family Typo: Marriad Couplos
Avorage HH Size: 3.4
Median Ace:28.6




Voter Analysis

= soccer moms (female, middle
aged, married, middle income,
white, kids, suburban)

= Nascar dads (male, middle aged,
married, middle income, white,
kids, Southern, suburban or rural)

= security moms ( ... )
= |ow information voters
= |vy League Elites
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Clustering

Questions:

= how do we fit clusters?

= how many clusters should we use?
= how should we evaluate model fit?
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K-Means

How do we fit the clusters?
= simplest method: K-means

= requires: real-valued data

= idea:

pick K initial cluster means

associate all points closest to mean k with cluster k

use points in cluster k to update mean for that cluster
re-associate points closest to new mean for k with cluster k
use new points in cluster k to update mean for that cluster

O 0o o o o o o

stop when no change between updates
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K-Means

Animation at:
http://shabal.in/visuals/kmeans/1.html
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http://shabal.in/visuals/kmeans/1.html

K-Means: Example

Data:
X4 X2
04 | -1.0
-1.0 | -22
24 | 22
-1.0 | -1.9
-0.5 | 0.6
-01 | 1.7
1.2 | 3.3
3.1 1.6
1.3 | 1.6
20 | 0.8

x2
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K-Means: Example
Pick K centers (randomly):

(—1,—1) and (0,0)
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K-Means: Example

Calculate distance between points and those centers:

X4 x || (=1,—1) [ (0,0)
04 | -1.0 1.4 1.1
-1.0 | -2.2 1.2 24
24 | 2.2 1.9 3.3
-1.0 | -1.9 0.9 2.2
-0.5 | 0.6 1.6 0.8
-0.1 1.7 2.9 1.7
1.2 3.3 4.8 3.5
3.1 1.6 4.8 3.4
1.3 1.6 3.5 2.1
2.0 0.8 3.5 2.2

> centers <- rbind(c(-1,-1),c(0,0))
> distl <- apply(x,1l,function(x) sqgrt (sum((x-centers[l,])"Z
> dist2 <- apply(x,1, function(x) sqgrt (sum((x-centers[2,])"Z
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K-Means: Example

Choose mean with smaller distance:

Xy Xo (—1,—1) | (0,0)
04 | -1.0 1.4 1.1
-1.0 | -22 1.2 2.4
24 | 22 1.9 3.3
-1.0 | -1.9 0.9 2.2
-05 | 0.6 1.6 0.8
-01 1.7 2.9 1.7
1.2 | 3.3 4.8 3.5
3.1 1.6 4.8 3.4
1.3 1.6 3.5 21
20 | 0.8 3.5 2.2

> dists <- cbind(distl,dist2)
> cluster.ind <- apply(dists,1l,which.min)
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K-Means: Example
New clusters:
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K-Means: Example

Refit means for each cluster:
= cluster 1: (—1.0,—2.2),
(—2.4,—2.2), (—1.0,—1.9) “
= new mean: (—1.5,—2.1) N *
= cluster 2: (0.4,—1.0), (—0.5,0.6),
(—0.1,1.7), (1.2,3.3), (3.1,1.6),
(1.3,1.8), (2.0,0.8) "
= new mean: (1.0,1.2) v
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K-Means: Example

Recalculate distances for each cluster:

x| x || (—1.5,—2.1) | (1.0,1.2)
04 | -1.0 2.2 2.3
-1.0 | -2.2 0.5 4.0
24 | 2.2 1.0 4.9
-1.0 | -1.9 0.5 3.8
-0.5 | 0.6 2.8 1.7
-0.1 | 1.7 4.1 1.2
1.2 | 3.3 6.0 2.1
3.1 1.6 5.8 2.0
1.3 | 1.6 4.6 0.5
20 | 0.8 4.6 1.1

Machine Learning: Jordan Boyd-Graber

| umD

Clustering | 20/1



K-Means: Example

Choose mean with smaller distance:

x| x || (—1.5—21)] (1.0,1.2)
04 | -1.0 2.2 23
1.0 | 2.2 0.5 4.0
24 | 2.2 1.0 4.9
1.0 | -1.9 0.5 3.8
05| 06 2.8 1.7
0.1 | 17 4.4 1.2
12 | 33 6.0 2.1
31 | 16 5.8 2.0
13| 16 4.6 0.5
20 | 08 4.6 1.1
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K-Means: Example
New clusters:

X2




K-Means: Example

Refit means for each cluster:

= cluster 1: (0.4,—1.0), "
(—1.0,—2.2), (—2.4,—2.2), .
(—1.0,—1.9) T
= new mean: (—1.0,—1.8) -
= cluster 2: (—0.5,0.6), (—0.1,1.7), ]
(1.2,3.3), (3.1,1.6), (1.3,1.6), .
(2.0,0.8) \
= new mean: (1.2,1.6) e e e  a—
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K-Means: Example

Recalculate distances for each cluster:

xi | X2 || (—1.0,—1.8) | (1.2,1.6)
04 | -1.0 1.6 2.7
-1.0 | -2.2 0.4 4.4
24 | 2.2 1.5 5.2
-1.0 | -1.9 0.1 4.1
-0.5 | 0.6 2.4 2.0
-0.1 | 1.7 3.6 1.2
1.2 | 3.3 5.6 1.7
3.1 1.6 5.3 1.9
1.3 | 1.6 4.1 0.1
20 | 0.8 4.0 1.2
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K-Means: Example

Select smallest distance and compare these clusters with previous:

Table: New Clusters Table: Old Clusters
X Xo (—1.0,—1.8) | (1.2,1.6) (—1.5,—2.1) | (1.0,1.2)
0.4 -1.0 1.6 2.7 2.2 2.3
-1.0 | 2.2 0.4 4.4 0.5 4.0
24 | 22 1.5 52 1.0 4.9
-1.0 | -1.9 0.1 41 0.5 3.8
-0.5 0.6 2.4 2.0 2.8 1.7
-0.1 | 1.7 3.6 1.2 4.1 1.2
1.2 3.3 5.6 1.7 6.0 21
3.1 1.6 5.3 1.9 5.8 2.0
13 | 1.6 4.1 0.1 4.6 0.5
2.0 0.8 4.0 1.2 4.6 1.1
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K-Means in Practice

R has a function for K-means in the st at s package; this is probably
already loaded

= |et’s use this for the Old Faithful data

> library (datasets)

> faith.2 <- kmeans (faithful, 2)

> names (faith.2)

> plot (faithful[, 1], faithfull[,2],col=faith.2Sclu
+ pch=faith.2S%cluster, 1wd=3)
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wait
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K-Means in R

K-means can be used for image
segmentation

= partition image into multiple
segments

= find boundaries of objects

= make art
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K-Means Clustering
What is our data look like this?

X2
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K-Means Clustering

True clustering:
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K-Means Clustering
K-means clustering (K = 2):
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Mixture Models

K-means associates data with cluster centers.
What if we actually modeled the data?

= real-valued data
= observation x; in cluster ¢;
have K clusters

model each cluster with a Gaussian distribution
X;l ¢ =k~ N(p, X)

= U, is mean vector, X, is covariance matrix
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Mixture Models
Gaussian mixture model (K = 2):




Mixture Models

Why mixture models?

= more flexible: can account for clusters with different shapes
= have data model (will be useful for choosing K)

= |ess sensitive to data scaling
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Multivariate Gaussian
Multivariate Gaussian distribution for x € R?:

p(x|p, =) = (2) ¢ |5 g 2= (xp)

= [ is vector of means
= 3 is covariance matrix
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Multivariate Gaussian
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Multivariate Gaussian
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Fitting a Mixture Model

Mixture model:
= observation X; in cluster ¢; with K clusters

= model each cluster with a Gaussian distribution

X;| ¢ =k~ N(u, Xx)

How do we find ¢, ..., ¢, (clusters) and (u1,%4),..., (Uk, k) (cluster
centers)?
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Fitting a Mixture Model

First, let's simplify the model:

= covariance matrices have only diagonal elements,

= set 02 =-.-= 0%, suppose known
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Fitting a Mixture Model

Next, use a method similar to K-means:

= start with random cluster centers
= associate observations to clusters by (log-)likelihood,

d ; d ;@
£(x;|c;= k) =——log(27) — ~ log ai'j —= (Xi,,-—.llk,j)z/(fi,,-
2 2 =1 2 =
1 d
o< —dlog(oy) — —22()‘:'./—%/)2

207 =

d
o< _Z(Xi,j - .Uk,j)2

j=1
= refit centers uq, ..., Uk given clusters by

1
kj= — E X','

= recluster observations...
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Fitting a Mixture Model

clustering with K-means clustering with GMM

minimize distance maximize likelihood

d
t(x;]c; = k) o< —Z(Xi,j—ﬂk,j)z

J=1

d(x;, k) =

d
Z(Xi,j — k)2
=1

update means with K-means update means with GMM

use average use average

’
Mokj = a Z Xi j Uk = p” Z Xi

nk ci=k
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Fitting a Mixture Model
OK, now what if

o2 0 ... 0
s_| 0O o5 ... 0
P ¢

2

0 0 0 0%

and 02,...,0% can take different values?

= use same algorithm
= update U, and O'i with maximum likelihood estimator,

1
.Uk,;:n— E Xij
k C,'=k
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Fitting a Mixture Model

Data:

X1 X2
-3.7 | -04
04 | 0.1
04 | -1.7
-04 | 1.0
-13 | -1.7
1.0 | 33
12 | 5.2
1.3 | 0.3
11 | -0.8
05 | 2.8
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Fitting a Mixture Model

= pick centers and variances, py = [—1,—1], 02 =[1,1], uy =[1,1],
o2 =[1,1]
= compute (proportional) log likelihoods,
d

(X, lci= k ZIOQ U/ Z(Xi,j_tukrj)z/ai,j

.:1

X4 Xo k=1 k=2
3.7 | 0.4 -3.8 -12.1
0.4 0.1 -1.6 -0.6
0.4 -1.7 -1.2 -3.8
-04 | -1.0 -0.2 -3.0
1.3 | 1.7 -0.3 -6.3
1.0 3.3 -11.2 -2.6
1.2 5.2 -22.0 -9.0

1.3 0.3 -3.6 -0.3
11 -0.8 -2.2 -1.6
0.5 2.8 -8.2 -1.7
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Fitting a Mixture Model

= fit new means and variances:

py =[—1.3,—1.2]
0% =[3.1,04]
s =1[0.9,1.8]
02=0.2,5.4]

= compute new distances...

Machine Learning: Jordan Boyd-Graber | UMD Clustering | 45/1



Fitting a Mixture Model

Xy Xo k= k=2
-3.7 | -04 | -1.8 | -70.8
0.4 | 0.1 -2.7 -1.0

04 | 1.7 -0.8 -2.0

-04 | -1.0 || -0.3 -6.8
-1.3 | -1.7 -0.5 -16.6
1.0 | 33 || -274 | -0.1

1.2 | 5.2 -55.9 -1.3
1.3 | 0.3 -4.3 -0.7
1.1 | -08 || -1.2 -0.6
05| 28| -21.3 | -0.7

No change, so clusters are final
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Fitting a Mixture Model

X2

-3 -2 -1 0 1

X1
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Limitations of k-means / mixture models

k-means is fast and simple, but . ..
= What if your data are discrete?

= What if each data point has more than one cluster? (digits vs.
documents)

= What if you don’t know the number of clusters?
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