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Learn the features and the function

—
Bl

Layer Ly

+1

Layer L, Layer L,

a$2) — f(W1(.:)X1 + W1(21)X2 + W1(;)X3 +b$1))

Machine Learning: Jordan Boyd-Graber | UMD

Multilayer Networks | 2/8



Learn the features and the function

—
Bl

Layer Ly

+1

Layer L, Layer L,

a§2) = f(Wz(:)m + Wz(;)xz + Wz(;)xs + bg))

Machine Learning: Jordan Boyd-Graber | UMD

Multilayer Networks | 2/8



Learn the features and the function

—
Bl

Layer Ly

+1

Layer L, Layer L,

a) = (W) xy + Wiy xp + Wi x4+ b1

Machine Learning: Jordan Boyd-Graber | UMD

Multilayer Networks | 2/8



Learn the features and the function

E—
hw,u[!":}

Layer Ly

+1

Layer L, Layer L,

)= 9 = ([ 2+ W WD )

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 2/8



Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hy ,(x).

1
J(W,b;x,y) = Ellhw,b(x)—yll2 (1)
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hy ,(x).

1
J(W,b;x,y) = 5||f7w,b(x)—y||2 (1)

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy p(x).
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J(W,b;x,y) = =|lhw,p(x) =yl (1)
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= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy ,(X).

1
(W, bix,y) = Sl ()~ I (1

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy ,(X).

1
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= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
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Objective Function

Putting it all together:
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Objective Function

Putting it all together:
n—1 8 Si1

J(W, b) = 1Ei%Ilfruxv,ta()((’))—}’(")II2 +%ZZ W) ®

i=1 i=1 j=1

= Our goal is to minimize J(W, b) as a function of W and b
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Objective Function

Putting it all together:

n—=1 8 Sit1

J(W,b) = %i%nhw,b(x(’))—y(’)llz A

i=1 i=1 j=1

= Our goal is to minimize J(W, b) as a function of W and b
= |nitialize W and b to small random value near zero

= Adjust parameters to optimize J
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Gradient Descent

Goal

Optimize J with respect to variables W and b

Objective t

undiscovered Parameter
country
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Backpropigation

= For convenience, write the input to sigmoid
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Backpropigation

= For convenience, write the input to sigmoid
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= The gradient is a function of a node’s error 6,.(/)
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Backpropigation

= For convenience, write the input to sigmoid
n
/ 1 -1
203w o
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= The gradient is a function of a node’s error 6,.(/)
= For output nodes, the error is obvious:
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Backpropigation

= For convenience, write the input to sigmoid
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= For output nodes, the error is obvious:
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= Other nodes must “backpropagate” downstream error based on
connection strength
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Backpropigation

= For convenience, write the input to sigmoid
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= The gradient is a function of a node’s error 6,.(/)

= For output nodes, the error is obvious:
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= Other nodes must “backpropagate” downstream error based on
connection strength
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Partial Derivatives

= For weights, the partial derivatives are

o L I(W,bix,y) = a5 (7)

= For the bias terms, the partial derivatives are

—dW.bix,y) =8 ®
db;

= But this is just for a single example ...
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Full Gradient Descent Algorithm

1. Initialize U and V() as zero
2. Foreachexamplei=1...m

2.1 Use backpropagation to compute V,J and V,,J
2.2 Update weight shifts U() = U) + v, J(W, b; x, y)
2.3 Update bias shifts V() = V() + v, J(W,b; x,y)

3. Update the parameters

w zw(’)_a[(l U(’))] 9)
m
b0 —p_ gl V(/)] (10)
m

4. Repeat until weights stop changing
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