Multilayer Networks

Machine Learning: Jordan Boyd-Graber
University of Maryland

Machine Learning: Jordan Boyd-Graber | Multilayer Networks | 1/8

Learn the features and the function

—
Bl

Layer Ly

+1

Layer L, Layer L,

a$2) — f(W1(.:)X1 + W1(21)X2 + W1(;)X3 +b$1))

Machine Learning: Jordan Boyd-Graber | UMD

Multilayer Networks | 2/8

Learn the features and the function

—
Bl

Layer Ly

+1

Layer L, Layer L,

a§2) = f(Wz(:)m + Wz(;)xz + Wz(;)xs + bg))

Machine Learning: Jordan Boyd-Graber | UMD

Multilayer Networks | 2/8

Learn the features and the function

—
Bl

Layer Ly

+1

Layer L, Layer L,

a) = (W) xy + Wiy xp + Wi x4+ b1

Machine Learning: Jordan Boyd-Graber | UMD

Multilayer Networks | 2/8

Learn the features and the function

E—
hw,u[!":}

Layer Ly

+1

Layer L, Layer L,

)= 9 = ([2+ W WD)

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 2/8

Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hy ,(x).

1
J(W,b;x,y) = Ellhw,b(x)—yll2 (1)

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 3/8

Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hy ,(x).

1
J(W,b;x,y) = Ellhw,b(x)—yll2 (1)

= We want this value, summed over all of the examples to be as small as
possible

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 3/8

Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hy ,(x).

1
J(W,b;x,y) = 5||f7w,b(x)—y||2 (1)

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large

S>> (wf @

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 3/8

Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hy ,(x).

1
J(W,b;x,y) = 5||f7w,b(x)—y||2 (1)

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large

S>> (wf @

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 3/8

Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy p(x).

—_

J(W,b;x,y) = =|lhw,p(x) =yl (1)

2

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
2 n—=1 8 Si 5
!
3. 2.2 (w) @

=1 =

Sum over all layers

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 3/8

Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy ,(X).

1
(W, bix,y) = Sl ()~ I (1

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
2 n—=1 5 Si41 5
/
2222 (W) @

T i=1 =1

Sum over all sources

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 3/8

Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy ,(X).

1
(W, bix,y) = Sl ()~ I (1

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large

An,—1 Sy Si41

222 () @

I i=1 j=

Sum over all destinations

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 3/8

Objective Function

Putting it all together:

n—=1 8 Sit1

J,6) = L3 o) O [+ 2SS (W @

i=1 I =1 j=1

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 4/8

Objective Function

Putting it all together:
n—1 8 Si1

J(W, b) = 1Ei%Ilfruxv,ta()((’))—}’(")II2 +%ZZ W) ®

i=1 i=1 j=1

= Our goal is to minimize J(W, b) as a function of W and b

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 4/8

Objective Function

Putting it all together:

n—=1 8 Sit1

J(W,b) = %i%nhw,b(x(’))—y(’)llz A

i=1 i=1 j=1

= Our goal is to minimize J(W, b) as a function of W and b

= |nitialize W and b to small random value near zero

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 4/8

Objective Function

Putting it all together:

n—=1 8 Sit1

J(W,b) = %i%nhw,b(x(’))—y(’)llz A

i=1 i=1 j=1

= Our goal is to minimize J(W, b) as a function of W and b
= |nitialize W and b to small random value near zero

= Adjust parameters to optimize J

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 4/8

Gradient Descent

Goal

Optimize J with respect to variables W and b

Objective t

undiscovered Parameter
country

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 5/8

Backpropigation

= For convenience, write the input to sigmoid

N0 Z Wy(/—1))(/_ o) @

=

Machine Learning: Jordan Boyd-Graber |

Backpropigation

= For convenience, write the input to sigmoid

n

N0 Z W’](/—nx/_ L) @
j=1

= The gradient is a function of a node’s error 6,.(/)

Jordan Boyd-Graber | UMD Multilayer Networks | 6/8

Backpropigation

= For convenience, write the input to sigmoid
n
/ 1 -1
203w o
=1
= The gradient is a function of a node’s error 6,.(/)
= For output nodes, the error is obvious:

0 a(n/) “y_hw,b(x)”2 :—(yi_af”l)) . f/(zi(n/))
Zj

1

5" =
2

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 6/8

Backpropigation

= For convenience, write the input to sigmoid

n

! 11 -1

203w o
=1

= The gradient is a function of a node’s error 6,.(/)

= For output nodes, the error is obvious:

7 1
57 = =i = (=) 1 (V)5 @
1
= Other nodes must “backpropagate” downstream error based on
connection strength
St41
51(/) _ (Z %(_/+1)5l(/+1)) f/(zi(/)) 6)
j=1

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 6/8

Backpropigation

= For convenience, write the input to sigmoid

n

! 11 -1

203w o
=1

= The gradient is a function of a node’s error 6,.(/)

= For output nodes, the error is obvious:

7 1
5" = = ()1 ——(y=a")r(@"); ©
1
= Other nodes must “backpropagate” downstream error based on
connection strength
St+1
51(/) _ (Z V‘/j1(1+1)51(/+1)) f/(zi(/)) 6)
j=1

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 6/8

Backpropigation

= For convenience, write the input to sigmoid

n

! 11 -1

20 =3 W (@
=1

= The gradient is a function of a node’s error 6,.(/)

= For output nodes, the error is obvious:

(m_ 9 2 (o mY (]
67" = I~ Pua I = y=a")r(a"); ©
1
= Other nodes must “backpropagate” downstream error based on
connection strength
0 _ [N 1) =50))
0, :(iji 0;)f/(z/) (6)
j=1
chain rule

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 6/8

Partial Derivatives

= For weights, the partial derivatives are

o L I(W,bix,y) = a5 (7)

= For the bias terms, the partial derivatives are

—dW.bix,y) =8 ®
db;

= But this is just for a single example ...

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 7/8

Full Gradient Descent Algorithm

1. Initialize U and V() as zero
2. Foreachexamplei=1...m

2.1 Use backpropagation to compute V,J and V,,J
2.2 Update weight shifts U() = U) + v, J(W, b; x, y)
2.3 Update bias shifts V() = V() + v, J(W,b; x,y)

3. Update the parameters

w zw(’)_a[(l U(’))] 9)
m
b0 —p_ gl V(/)] (10)
m

4. Repeat until weights stop changing

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 8/8

	Deep Learning from Data

