
Multilayer Networks

Machine Learning: Jordan Boyd-Graber
University of Maryland
INTRODUCTION

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 1 / 9

Deep Learning was once known as “Neural Networks”

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 2 / 9

But it came back . . .

Political Ideology Detection Using Recursive Neural Networks

Mohit Iyyer1, Peter Enns2, Jordan Boyd-Graber3,4, Philip Resnik2,4

1Computer Science, 2Linguistics, 3iSchool, and 4UMIACS
University of Maryland

{miyyer,peter,jbg}@umiacs.umd.edu, resnik@umd.edu

Abstract

An individual’s words often reveal their po-
litical ideology. Existing automated tech-
niques to identify ideology from text focus
on bags of words or wordlists, ignoring syn-
tax. Taking inspiration from recent work in
sentiment analysis that successfully models
the compositional aspect of language, we
apply a recursive neural network (RNN)
framework to the task of identifying the po-
litical position evinced by a sentence. To
show the importance of modeling subsen-
tential elements, we crowdsource political
annotations at a phrase and sentence level.
Our model outperforms existing models on
our newly annotated dataset and an existing
dataset.

1 Introduction

Many of the issues discussed by politicians and
the media are so nuanced that even word choice
entails choosing an ideological position. For ex-
ample, what liberals call the “estate tax” conser-
vatives call the “death tax”; there are no ideolog-
ically neutral alternatives (Lakoff, 2002). While
objectivity remains an important principle of jour-
nalistic professionalism, scholars and watchdog
groups claim that the media are biased (Groseclose
and Milyo, 2005; Gentzkow and Shapiro, 2010;
Niven, 2003), backing up their assertions by pub-
lishing examples of obviously biased articles on
their websites. Whether or not it reflects an under-
lying lack of objectivity, quantitative changes in the
popular framing of an issue over time—favoring
one ideologically-based position over another—can
have a substantial effect on the evolution of policy
(Dardis et al., 2008).

Manually identifying ideological bias in polit-
ical text, especially in the age of big data, is an
impractical and expensive process. Moreover, bias

They
dubbed it

the

death tax“ ” and created a
big lie about

its adverse effects
on small

businesses

Figure 1: An example of compositionality in ideo-
logical bias detection (red ! conservative, blue !
liberal, gray ! neutral) in which modifier phrases
and punctuation cause polarity switches at higher
levels of the parse tree.

may be localized to a small portion of a document,
undetectable by coarse-grained methods. In this pa-
per, we examine the problem of detecting ideologi-
cal bias on the sentence level. We say a sentence
contains ideological bias if its author’s political
position (here liberal or conservative, in the sense
of U.S. politics) is evident from the text.

Ideological bias is difficult to detect, even for
humans—the task relies not only on political
knowledge but also on the annotator’s ability to
pick up on subtle elements of language use. For
example, the sentence in Figure 1 includes phrases
typically associated with conservatives, such as
“small businesses” and “death tax”. When we take
more of the structure into account, however, we
find that scare quotes and a negative propositional
attitude (a lie about X) yield an evident liberal bias.

Existing approaches toward bias detection have
not gone far beyond “bag of words” classifiers, thus
ignoring richer linguistic context of this kind and
often operating at the level of whole documents.
In contrast, recent work in sentiment analysis has
used deep learning to discover compositional ef-
fects (Socher et al., 2011b; Socher et al., 2013b).

Building from those insights, we introduce a re-
cursive neural network (RNN) to detect ideological
bias on the sentence level. This model requires

� More data

� Better tricks
(regularization)

� Faster computers

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 3 / 9

And companies are investing . . .

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 9

And companies are investing . . .

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 9

And companies are investing . . .

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 9

Map inputs to output

Input

Vector x1 . . . xd

Output

f

�

∑

i

Wixi +b

�

Activation

f (z)≡
1

1+exp(−z)

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 5 / 9

Map inputs to output

Input

Vector x1 . . . xd

inputs encoded as
real numbers

Output

f

�

∑

i

Wixi +b

�

Activation

f (z)≡
1

1+exp(−z)

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 5 / 9

Map inputs to output

Input

Vector x1 . . . xd

Output

f

�

∑

i

Wixi +b

�

multiply inputs by
weights

Activation

f (z)≡
1

1+exp(−z)

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 5 / 9

Map inputs to output

Input

Vector x1 . . . xd

Output

f

�

∑

i

Wixi +b

�

add bias

Activation

f (z)≡
1

1+exp(−z)

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 5 / 9

Map inputs to output

Input

Vector x1 . . . xd

Output

f

�

∑

i

Wixi +b

�

Activation

f (z)≡
1

1+exp(−z)

pass through
nonlinear sigmoid

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 5 / 9

Why is it called activation?

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 6 / 9

In the shallow end

� This is still logistic regression

� Engineering features x is difficult (and requires expertise)

� Can we learn how to represent inputs into final decision?

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 7 / 9

Better name: non-linearity

� Logistic / Sigmoid

f (x) =
1

1+e−x
(1)

� tanh

f (x) = tanh(x) =
2

1+e−2x
−1 (2)

� ReLU

f (x) =

�

0 for x < 0
x for x ≥ 0

(3)

� SoftPlus: f (x) = ln(1+ex)

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 8 / 9

But it is not perfect

� Compare against baselines: randomized features, nearest-neighbors,
linear models

� Optimization is hard (alchemy)

� Models are often not interpretable

� Requires specialized hardware and tons of data to scale

Machine Learning: Jordan Boyd-Graber | UMD Multilayer Networks | 9 / 9

