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Today

� Perceptron
� Structured Perceptron

1. Good ML analysis, standard NLP problem
2. Uses structure and representation
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Most supervised algorithms are . . .

Logistic Regression

p(y |x) =σ(
∑

i βixi)

SVM

sign(~w · x +b)

� What statistical property do these (and many others share)?

� Hint: p(yi ,yj |xi ,xj) = p(yi |xi)p(yj |xj)

� Independent!
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Is this how the world works?

Also particularly relevant for 2016: correlated voting patterns
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POS Tagging: Task Definition

� Annotate each word in a sentence with a part-of-speech marker.

� Lowest level of syntactic analysis.
John saw the saw and decided to take it to the table
NNP VBD DT NN CC VBD TO VB PRP IN DT NN
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Typical Features (φ)

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . ,xN}, and a series of unobserved states {z1, . . . ,zN}.

π Start state scores (vector of length K ): πi

θ Transition matrix (matrix of size K by K ): θi ,j

β An emission matrix (matrix of size K by V ): βj ,w
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Viterbi Algorithm

� Given an unobserved sequence of length L, {x1, . . . ,xL}, we want to find
a sequence {z1 . . .zL} with the highest score.

� It’s impossible to compute K L possibilities.

� So, we use dynamic programming to compute most likely tags for each
token subsequence from 0 to t that ends in state k .

� Memoization: fill a table of solutions of sub-problems

� Solve larger problems by composing sub-solutions

� Base case:
f1(k) =πk +βk ,xi

(2)

� Recursion:
fn(k) =max

j

�

fn−1(j)+θj ,k

�

+βk ,xn
(3)
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� The complexity of this is now K 2L.

� Garden path sentences like “the old man the boats” require all cells

� But just computing the max isn’t enough. We also have to remember
where we came from. (Breadcrumbs from best previous state.)

Ψn = argmaxj fn−1(j)+θj ,k (4)

� Let’s do that for the sentence “come and get it”
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POS πk βk ,x1
f1(k)

MOD log0.234 log0.024 -5.18
DET log0.234 log0.032 -4.89

CONJ log0.234 log0.024 -5.18
N log0.021 log0.016 -7.99

PREP log0.021 log0.024 -7.59
PRO log0.021 log0.016 -7.99

V log0.234 log0.121 -3.56
come and get it (with HMM probabilities)

Why logarithms?

1. More interpretable than a float with lots of zeros.

2. Underflow is less of an issue

3. Generalizes to linear models (next!)

4. Addition is cheaper than multiplication

log(ab) = log(a)+ log(b) (5)
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POS f1(j)

f1(j)+θj ,CONJ

f2(CONJ)
MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47 ??? -6.02

N -7.99

≤−7.99

PREP -7.59

≤−7.59

PRO -7.99

≤−7.99

V -3.56

-5.21

come and get it

f0(V)+θV, CONJ = f0(k)+θV, CONJ =−3.56+−1.65

log f1(k) =−5.21+βCONJ, and =

−5.21−0.64
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POS f1(k) f2(k) b2 f3(k) b3 f4(k) b4

MOD -5.18

-0.00 X -0.00 X -0.00 X

DET -4.89

-0.00 X -0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99

-0.00 X -0.00 X -0.00 X

PREP -7.59

-0.00 X -0.00 X -0.00 X

PRO -7.99

-0.00 X -0.00 X -14.6 V

V -3.56

-0.00 X -9.03 CONJ -0.00 X

WORD come and get it
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