
Regression

Machine Learning: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM LAUREN HANNAH

Machine Learning: Jordan Boyd-Graber | UMD Regression | 1 / 1

Linear Regression

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

x

y

Data are the set of inputs and outputs, D =
�

(xi ,yi)
	n

i=1

Machine Learning: Jordan Boyd-Graber | UMD Regression | 2 / 1

Linear Regression

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

x

y

In linear regression, the goal is to predict y from x using a linear function

Machine Learning: Jordan Boyd-Graber | UMD Regression | 3 / 1

Linear Regression

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

x

y

Examples of linear regression:

� given a child’s age and gender, what is his/her height?

� given unemployment, inflation, number of wars, and economic growth,
what will the president’s approval rating be?

� given a browsing history, how long will a user stay on a page?

Machine Learning: Jordan Boyd-Graber | UMD Regression | 4 / 1

Linear Regression

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

(xi, yi)

f (x) = !0 +!1x

Machine Learning: Jordan Boyd-Graber | UMD Regression | 5 / 1

Multiple Covariates

Often, we have a vector of inputs where each represents a different feature
of the data

x= (x1, . . . ,xp)

The function fitted to the response is a linear combination of the covariates

f (x) =β0 +
p
∑

j=1

βjxj

Machine Learning: Jordan Boyd-Graber | UMD Regression | 6 / 1

Multiple Covariates

� Often, it is convenient to represent x as (1,x1, . . . ,xp)

� In this case x is a vector, and so is β (we’ll represent them in bold face)

� This is the dot product between these two vectors

� This then becomes a sum (this should be familiar!)

βx=β0 +
p
∑

j=1

βjxj

Machine Learning: Jordan Boyd-Graber | UMD Regression | 7 / 1

Hyperplanes: Linear Functions in Multiple Dimensions

Hyperplane

1 2 3 4 5 6

10
15

20
25

30
35

 0

100

200

300

400

500

x1

x2

y

●●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

Machine Learning: Jordan Boyd-Graber | UMD Regression | 8 / 1

Covariates

� Do not need to be raw value of x1,x2, . . .
� Can be any feature or function of the data:
� Transformations like x2 = log(x1) or x2 = cos(x1)
� Basis expansions like x2 = x2

1 , x3 = x3
1 , x4 = x4

1 , etc
� Indicators of events like x2 = 1{−1≤x1≤1}
� Interactions between variables like x3 = x1x2

� Because of its simplicity and flexibility, it is one of the most widely
implemented regression techniques

Machine Learning: Jordan Boyd-Graber | UMD Regression | 9 / 1

Fitting a Regression

Fitting a Linear Regression

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y
yi !!1xi()2

Idea: minimize the Euclidean distance between data and fitted line

RSS(β) =
1

2

n
∑

i=1

(yi −βxi)
2

Machine Learning: Jordan Boyd-Graber | UMD Regression | 10 / 1

Fitting a Regression

How to Find β

� Use calculus to find the value of β that minimizes the RSS
� The optimal value is

β̂ =

∑n
i=1 yixi

∑n
i=1 x2

i

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

x

y

Machine Learning: Jordan Boyd-Graber | UMD Regression | 11 / 1

Fitting a Regression

Prediction

� After finding β̂ , we would like to predict an output value for a new set of
covariates

� We just find the point on the line that corresponds to the new input:

ŷ =β0 +β1x (1)

Machine Learning: Jordan Boyd-Graber | UMD Regression | 12 / 1

Fitting a Regression

Prediction

� After finding β̂ , we would like to predict an output value for a new set of
covariates

� We just find the point on the line that corresponds to the new input:

ŷ =β0 +β1x (1)

Machine Learning: Jordan Boyd-Graber | UMD Regression | 12 / 1

Fitting a Regression

Prediction

� After finding β̂ , we would like to predict an output value for a new set of
covariates

� We just find the point on the line that corresponds to the new input:

ŷ = 1.0+0.5x (1)

y=1.0 + 0.5x

Machine Learning: Jordan Boyd-Graber | UMD Regression | 12 / 1

Fitting a Regression

Prediction

� After finding β̂ , we would like to predict an output value for a new set of
covariates

� We just find the point on the line that corresponds to the new input:

ŷ = 1.0+0.5 ∗5 (1)

y=1.0 + 0.5x

x=5.0

Machine Learning: Jordan Boyd-Graber | UMD Regression | 12 / 1

Fitting a Regression

Prediction

� After finding β̂ , we would like to predict an output value for a new set of
covariates

� We just find the point on the line that corresponds to the new input:

ŷ = 3.5 (1)

y=1.0 + 0.5x

x=5.0

Machine Learning: Jordan Boyd-Graber | UMD Regression | 12 / 1

Fitting a Regression

Probabilistic Interpretation

� Our analysis so far has not included any probabilities

� Linear regression does have a probabilisitc (probability model-based)
interpretation

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

x

y

Machine Learning: Jordan Boyd-Graber | UMD Regression | 13 / 1

Fitting a Regression

Probabilistic Interpretation

� Linear regression assumes that response values have a Gaussian
distribution around the linear mean function,

Yi |xi ,β ∼N(xiβ ,σ2)

� This is a discriminative model, where inputs x are not modeled

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

� Minimizing RSS is equivalent to maximizing conditional likelihood

Machine Learning: Jordan Boyd-Graber | UMD Regression | 14 / 1

Example

Example: Old Faithful

Machine Learning: Jordan Boyd-Graber | UMD Regression | 15 / 1

Example

Example: Old Faithful

We will predict the time that we will have to wait to see the next eruption
given the duration of the current eruption

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

Current Eruption Time (min)

W
ai

tin
g

T
im

e
(m

in
)

Machine Learning: Jordan Boyd-Graber | UMD Regression | 16 / 1

Example

Example: Old Faithful

We can plot our data and make a function for new predictions

> # Plot a line on the data
> abline(fit.lm,col="red",lwd=3)
>
> # Make a function for prediction
> fit.lm$coefficients[1]
(Intercept)

33.4744
> fit.lm$coefficients[2]
eruptions

10.72964
> faithful.fit <- function(x) fit.lm$coefficients[1] +
fit.lm$coefficients[2]*x
> x.pred <- c(2.0, 2.7, 3.8, 4.9)
> faithful.fit(x.pred)
[1] 54.93368 62.44443 74.24703 86.04964

Machine Learning: Jordan Boyd-Graber | UMD Regression | 17 / 1

Example

Example: Old Faithful

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

Current Eruption Time (min)

W
ai

tin
g

T
im

e
(m

in
)

Machine Learning: Jordan Boyd-Graber | UMD Regression | 18 / 1

Regularized Regression

Multivariate Linear Regression

Example: p = 1, have 2 points

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

●

●

−1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

x

y

� Have p+1 or fewer points, line hits all (or p with mean 0 data)
� ≥ p+1 (but still close to that number), line goes close to all points

Machine Learning: Jordan Boyd-Graber | UMD Regression | 19 / 1

Regularized Regression

Noise, Bias, Variance Tradeoff

� Noise: Lower bound on
performance

� Bias: Error as a result as
choosing the wrong model

� Variance: Variation due to training
sample and randomization

� No model is perfect

� More complex models are more susceptible to errors due to variance

Machine Learning: Jordan Boyd-Graber | UMD Regression | 20 / 1

Regularized Regression

Noise, Bias, Variance Tradeoff

� Noise: Lower bound on
performance

� Bias: Error as a result as
choosing the wrong model

� Variance: Variation due to training
sample and randomization

� No model is perfect

� More complex models are more susceptible to errors due to variance

Machine Learning: Jordan Boyd-Graber | UMD Regression | 20 / 1

Regularized Regression

Multivariate Linear Regression

Why linear regression:

� has few parameters to estimate (p)
� really restrictive model–low variance, higher bias

θ	

θ	

θ	

θ	

BI
AS

	

lo
w
	

hi
gh
	

VARIANCE	
 low	
 high	

� should be good for data with few observations, large number of
covariates...

� ... but we can’t use it in this situation

Machine Learning: Jordan Boyd-Graber | UMD Regression | 21 / 1

Regularized Regression

Multivariate Linear Regression

Idea: if we have a large number of covariates compared to observations,
say n< 2p, best to estimate most coefficients as 0!

� not enough info to determine all coefficients

� try to estimate ones with strong signal

� set everything else to 0 (or close)

Coefficients of 0 may not be a bad assumption...

If we have 1,000s of coefficients, are they all equally important?

Machine Learning: Jordan Boyd-Graber | UMD Regression | 22 / 1

Regularized Regression

Gene Expression

Example: microarray gene expression data

� gene expression: want to measure the level at which information in a
gene is used in the synthesis of a functional gene product (usually
protein)

� can use gene expression data to determine subtype of cancer (e.g.
which type of Lymphoma B?) or predict recurrence, survival time, etc

� problem: thousands of genes, hundreds of patients, p > n!

Intuition: only a handful of genes should affect outcomes

Machine Learning: Jordan Boyd-Graber | UMD Regression | 23 / 1

Regularized Regression

Gene Expression

� gene expression levels are continuous values

� data: observation i is gene expression levels from patient i , attached to
outcome for patient (survival time)

� covariates: expression levels for p genes

Machine Learning: Jordan Boyd-Graber | UMD Regression | 24 / 1

Regularized Regression

Gene Expression

� collinearity: does it matter which gene is selected for prediction? No!

� overfitting: now fitting p′ non-0 coefficients to n observations with
p′ << n means less fitting of noise

Machine Learning: Jordan Boyd-Graber | UMD Regression | 25 / 1

Regularized Regression

Regularized Linear Regression

Regularization:

� still minimize the RSS

� place a penalty on large values for β1, ..., βp (why not β0? can always
easily estimate mean)

� add this penalty to the objective function

� solve for β̂ !

New objective function:

β̂ = argmin
β

1

2

n
∑

i=1

(yi −xiβ)
2 +λ

p
∑

j=1

penalty(βj)

λ acts as a weight on penalty: low values mean few coefficients near 0,
high values mean many coefficients near 0

Machine Learning: Jordan Boyd-Graber | UMD Regression | 26 / 1

Regularized Regression

Regularized Linear Regression

Regularization:

� still minimize the RSS

� place a penalty on large values for β1, ..., βp (why not β0? can always
easily estimate mean)

� add this penalty to the objective function

� solve for β̂ !

New objective function:

β̂ = argmin
β

1

2

n
∑

i=1

(yi −xiβ)
2 +λ

p
∑

j=1

penalty(βj)

λ acts as a weight on penalty: low values mean few coefficients near 0,
high values mean many coefficients near 0

Machine Learning: Jordan Boyd-Graber | UMD Regression | 26 / 1

Regularized Regression

Regularized Linear Regression

Regularization:

� still minimize the RSS

� place a penalty on large values for β1, ..., βp (why not β0? can always
easily estimate mean)

� add this penalty to the objective function

� solve for β̂ !

New objective function:

β̂ = argmin
β

1

2

n
∑

i=1

(yi −xiβ)
2 +λ

p
∑

j=1

penalty(βj)

λ acts as a weight on penalty: low values mean few coefficients near 0,
high values mean many coefficients near 0

Machine Learning: Jordan Boyd-Graber | UMD Regression | 26 / 1

Regularized Regression

Regularized Linear Regression

Regularization:

� still minimize the RSS

� place a penalty on large values for β1, ..., βp (why not β0? can always
easily estimate mean)

� add this penalty to the objective function

� solve for β̂ !

New objective function:

β̂ = argmin
β

1

2

n
∑

i=1

(yi −xiβ)
2 +λ

p
∑

j=1

penalty(βj)

λ acts as a weight on penalty: low values mean few coefficients near 0,
high values mean many coefficients near 0

Machine Learning: Jordan Boyd-Graber | UMD Regression | 26 / 1

Regularized Regression

Regularized Linear Regression

Regularization: what is a good penalty function?

Same as penalties used to fit errors:

� Ridge regression (squared penalty):

β̂Ridge = argmin
β

1

2

n
∑

i=1

(yi −xiβ)
2 +λ

p
∑

j=1

β 2
j

� Lasso regression (absolute value penalty):

β̂ Lasso = argmin
β

1

2

n
∑

i=1

(yi −xiβ)
2 +λ

p
∑

j=1

�

�βj

�

�

Machine Learning: Jordan Boyd-Graber | UMD Regression | 27 / 1

Regularized Regression

Comparing Ridge and Lasso

Ridge Lasso
Objective 1

2

∑n
i=1 (yi −xiβ)

2 +λ
∑p

j=0β
2
j

1
2

∑n
i=1 (yi −xiβ)

2 +λ
∑p

j=0

�

�βj

�

�

Estimator (XT X+λI)−1 XT y not closed form
Coefficients most close to 0 most exactly 0

Stability robust to changes in X, y not robust to changes in X, y

Regularized linear regression is fantastic for low signal datasets or those
with p >> n

� Ridge: good when many coefficients affect value but not large (gene
expression)

� Lasso: good when you want an interpretable estimator

Machine Learning: Jordan Boyd-Graber | UMD Regression | 28 / 1

Regularized Regression

Choosing λ

Both Ridge and Lasso have a tunable parameter, λ

� use cross validation to find best λ

λ̂= argmin
λ

n
∑

i=1

�

yi −xi β̂−i ,λ

�2

� try out many values

� see how well it works on “development” data

Machine Learning: Jordan Boyd-Graber | UMD Regression | 29 / 1

Wrapup

Regression

� Workhorse technique of data analysis

� Fundamental tool that we saw before (“Logistic Regression”)

� Important to understand interpretation of regression parameters

Machine Learning: Jordan Boyd-Graber | UMD Regression | 30 / 1

