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Can you solve this with linear separator?
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Adding another dimension

Behold yon miserable creature. That Point is a
Being like ourselves, but confined to the
non-dimensional Gulf. He is himself his own World,
his own Universe; of any other than himself he can
form no conception; he knows not Length, nor
Breadth, nor Height, for he has had no experience
of them; he has no cognizance even of the number
Two; nor has he a thought of Plurality, for he is
himself his One and All, being really Nothing. Yet
mark his perfect self-contentment, and hence learn
this lesson, that to be self-contented is to be vile
and ignorant, and that to aspire is better than to be
blindly and impotently happy.
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Problems get easier in higher dimensions
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What’s special about SVMs?

max
~α

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

i=1

αiαjyiyj(~xi · ~xj) (1)

� This dot product is basically just how much xi looks like xj . Can we
generalize that?

� Kernels!
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What’s a kernel?

� A function K :X ×X 7→R is a kernel overX .

� This is equivalent to taking the dot product 〈φ(x1),φ(x2)〉 for some
mapping

� Mercer’s Theorem: So long as the function is continuous and
symmetric, then K admits an expansion of the form

K (x ,x ′) =
∞
∑

n=0

anφn(x)φn(x
′) (2)

� The computational cost is just in computing the kernel
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Polynomial Kernel

K (x ,x ′) = (x · x ′+ c)d (3)

When d = 2:
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Gaussian Kernel

K (x ,x ′) = exp−





x ′− x






2

2σ2
(4)

which can be rewritten as

K (x ,x ′) =
∑

n

(x · x ′)n

σnn!
(5)

(All polynomials!)
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Tree Kernels

� Sometimes we have example x that are hard to express as vectors

� For example sentences “a dog” and “a cat”: internal syntax structure

3/5 structures match, so tree kernel returns .6

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 9 / 27



Tree Kernels

� Sometimes we have example x that are hard to express as vectors

� For example sentences “a dog” and “a cat”: internal syntax structure

3/5 structures match, so tree kernel returns .6

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 9 / 27



Tree Kernels

� Sometimes we have example x that are hard to express as vectors

� For example sentences “a dog” and “a cat”: internal syntax structure

3/5 structures match, so tree kernel returns .6

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 9 / 27



What does this do to learnability?

� Kernelized hypothesis spaces are obviously more complicated

� What does this do to complexity?

� Rademacher complexity for a kernel with radius Λ and data with radius
r : S ⊂ {x : K (x ,x)≤ r2}, H = {x 7→w ·φ(x) : ‖w‖ ≤Λ}

R̂S (H)≤

√

√ r2Λ2

m
(6)

� Proof requires real analysis
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Margin learnability

� With probability 1−δ:

R(h)≤ R̂ρ(h)+2

√

√ r2Λ2/ρ2

m
+

√

√ log 1
δ

2m
(7)

� So if you can find a simple kernel representation that induces a margin,
use it!

� . . . so long as you can handle the computational complexity
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How does it effect optimization

� Replace all dot product with kernel evaluations K (x1,x2)

� Makes computation more expensive, overall structure is the same

� Try linear first!
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Examples

Kernelized SVM

X, Y = read_data("ex8a.txt")
clf = svm.SVC(kernel=kk, degree=dd, gamma=gg)
clf.fit(X, Y)
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Examples

Linear Kernel Doesn’t Work
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Examples

Polynomial Kernel

K (x ,x ′) = (x · x ′+ c)d (8)

When d = 2:
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Examples

Polynomial Kernel d = 1,c = 5

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 16 / 27



Examples

Polynomial Kernel d = 2,c = 5
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Examples

Polynomial Kernel d = 3,c = 5
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Examples

Gaussian Kernel

K (x ,x ′) = exp
�

γ




x ′− x






2�
(9)
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Examples

RBF Kernel γ= 2
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Examples

RBF Kernel γ= 100
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Examples

RBF Kernel γ= 1
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Examples

RBF Kernel γ= 10
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Examples

RBF Kernel γ= 100
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Examples

RBF Kernel γ= 1000
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Examples

Be careful!

� Which has the lowest training error?

� Which one would generalize best?
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Examples

Recap

� This completes our discussion of
SVMs

� Workhorse method of machine
learning

� Flexible, fast, effective

� Kernels: applicable to wide range
of data, inner product trick keeps
method simple
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