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Single Hypothesis

What is the Rademacher complexity of a hypothesis set reduced to a single
hypothesis?
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Rademacher Identity 1

Prove
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Rademacher Identity 2

Prove

Rm(H+H) =R (H)+Zm(H)

(12)
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VC Dimension

To show VC dimension of a set of points
= Show that a set of d can be shattered
= Show that no set of d + 1 can be shattered
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Axis Aligned Rectangles
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Axis Aligned Rectangles
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Hyperplanes
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Hyperplanes
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Figure 3.2 Unrealizable dichotomies for four points using hyperplanes in B2 (a)
All four points lie on the convex hull. (b) Three points lie on the convex hull while
the remaining point is interior.
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Figure 3.2 Unrealizable dichotomies for four points using hyperplanes in B2 (a)
All four points lie on the convex hull. (b) Three points lie on the convex hull while
the remaining point is interior.

In general, the VC dimension of d-dimensional hyperplanes is d 4 1
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Finite Subsets

Show that the VC dimension of a finite hypothesis set H is at most Ig|H|.
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Finite Subsets

Show that the VC dimension of a finite hypothesis set H is at most Ig|H|.

= To shatter a set, it means that every point can take on a different binary
label h(x)

= If a set has d points, there are 29 ways to do that
= Each configuration requires a different hypothesis
= Solving for the number of hypotheses gives Ig|H|
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Next time

= Getting more practical
= SVMs
= Excellent theoretical properties
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