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Content Questions
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Administrivia Questions
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Single Hypothesis

What is the Rademacher complexity of a hypothesis set reduced to a single
hypothesis?
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Rademacher Identity 1

Prove

Rm (αH) = |α|Rm (H)

If α≥ 0 If α< 0
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Since σi and −σ have the same distribution,Rm (αH) = |α|Rm (H)
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Rademacher Identity 2

Prove

Rm (H +H ′) =Rm (H)+Rm (H ′)

(12)
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VC Dimension

To show VC dimension of a set of points

� Show that a set of d can be shattered

� Show that no set of d +1 can be shattered
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Axis Aligned Rectangles
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Hyperplanes
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Hyperplanes
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Hyperplanes

In general, the VC dimension of d-dimensional hyperplanes is d +1

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 9 / 1



Finite Subsets

Show that the VC dimension of a finite hypothesis set H is at most lg |H|.

� To shatter a set, it means that every point can take on a different binary
label h(x)

� If a set has d points, there are 2d ways to do that

� Each configuration requires a different hypothesis

� Solving for the number of hypotheses gives lg |H|
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Next time

� Getting more practical

� SVMs

� Excellent theoretical properties
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