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Recap

� Rademacher complexity provides nice guarantees

R(h)≤ R̂(h)+Rm (H)+O

 √

√ log 1
δ

2m

!

(1)

� But in practice hard to compute for real hypothesis classes

� Is there a relationship with simpler combinatorial measures?
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Growth Function

Define the growth function ΠH :N→N for a hypothesis set H as:

∀m ∈N,ΠH(m)≡ max
{x1,...,xm}∈X

�

�{(h(x1), . . . ,h(xm) : h ∈H}
�

� (2)

i.e., the number of ways m points can be classified using H.
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Rademacher Complexity vs. Growth Function

If G is a function taking values in {−1,+1}, then

Rm (G)≤

√

√2 lnΠG(m)

m
(3)

Uses Masart’s lemma
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Vapnik-Chervonenkis Dimension

VC(H)≡max
�

m :ΠH(m) = 2m
	

(4)

The size of the largest set that can be fully shattered by H.
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VC Dimension for Hypotheses

� Need upper and lower bounds

� Lower bound: example

� Upper bound: Prove that no set of d +1 points can be shattered by H
(harder)
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Intervals

What is the VC dimension of [a,b] intervals on the real line.

� What about two points?

� Two points can be perfectly classified, so VC dimension ≥ 2

� What about three points?

� No set of three points can be shattered

� Thus, VC dimension of intervals is 2
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Sine Functions

� Consider hypothesis that classifies points on a line as either being
above or below a sine wave

{t→ sin(ωx) :ω ∈R} (5)

� Can you shatter three points?

� Can you shatter four points?
� How many points can you shatter?
� Thus, VC dim of sine on line is∞
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
so we can prove generalization bounds.

Theorem

Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then
∀m ∈N

ΠH(m)≤
d
∑

i=0

�

m

i

�

≡Φd(m) (6)

This is good because the sum when multiplied out becomes

(m
i ) =

m·(m−1)...
i! =O (md). When we plug this into the learning error limits:

log(ΠH(2m)) = log(O (md)) =O (d logm).
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Proof of Sauer’s Lemma

Prelim:

We’ll proceed by induction. Our two base cases are:

� If m = 0, ΠH(m) = 1. You have no data, so there’s only one
(degenerate) labeling

� If d = 0, ΠH(m) = 1. If you can’t even shatter a single point, then it’s a
fixed function
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Induction Step

Assume that it holds for all m′, d ′ for which m′+d ′ <m+d . We are given
H, |S|=m, S = 〈x1, . . . ,xm〉, and d is the VC dimension of H.

Build two new hypothesis spaces

Encodes where the extended set has differences on the first m points.
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What is VC dimension of H1 and H2?

� If a set is shattered by H1, then it is also shattered by H

VC-dim(H1)≤ VC-dim(H) = d (7)

� If a set T is shattered by H2, then T ∩{xm} is shattered by H since there
will be two hypotheses in H for every element of H2 by adding xm

VC-dim(H2)≤ d −1 (8)
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Bounding Growth Function

|ΠH(S)|=|H1|+ |H2| (9)

≤
d
∑

i=0

�

m−1

i

�

+
d−1
∑

i=0

�

m−1

i

�

(10)

(11)
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d
∑

i=0

�

m−1

i

�

+
d−1
∑

i=0

�

m−1

i

�

(10)

(11)

We can rewrite this as
∑d

i=0 (
m−1
i−1 ) because ( x

−1) = 0.
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�
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�
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�
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d
∑
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��
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�
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�
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�
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i

�
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=
d
∑

i=0

��

m−1

i

�

+

�

m−1
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��

(11)

=
d
∑

i=0

�

m

i

�

(12)

(13)

Pascal’s Triangle
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d
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�
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∑
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�

m
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�

(12)

=Φd(m) (13)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 13 / 11



Wait a minute . . .

Is this combinatorial expression really O (md)?
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Generalization Bounds

Combining our previous generalization results with Sauer’s lemma, we
have that for a hypothesis class H with VC dimension d , for any δ > 0 with
probability at least 1−δ, for any h ∈H,

R(h)≤ R̂(h)+

√

√2d log em
d

m
+

√

√ log 1
δ

2m
(14)
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Whew!

� We now have some theory down

� We’re now going to see if we can find an algorithm that has good VC
dimension

� And works well in practice . . . Support Vector Machines

� In class: more VC dimension examples
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