Introduction to Machine Learning

Machine Learning: Jordan Boyd-Graber
University of Maryland

Slides adapted from Rob Schapire

Machine Learning: Jordan Boyd-Graber | Introduction to Machine Learning |



Recap

= Rademacher complexity provides nice guarantees

. log 5
R(h) < R(h)+ R (H)+ 0 0
2m

= But in practice hard to compute for real hypothesis classes

= |s there a relationship with simpler combinatorial measures?
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Growth Function

Define the growth function I1, : N — N for a hypothesis set H as:

VmeN,IIy(m)=  max__|[{(h(x)),...,h(xm): he H}| )

{Xq,eeXmEX
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Growth Function

Define the growth function I1, : N — N for a hypothesis set H as:

VmeN,IIy(m)=  max__|[{(h(x)),...,h(xm): he H}| )

{Xq,eeXmEX

i.e., the number of ways m points can be classified using H.
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Rademacher Complexity vs. Growth Function

If Gis a function taking values in {—1,+1}, then

2InTIg(m)

(@) | T2 ®

Uses Masart’s lemma
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Vapnik-Chervonenkis Dimension
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Vapnik-Chervonenkis Dimension

VC(H) =max{m:Ty(m) =2"} (4)

The size of the largest set that can be fully shattered by H.
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VC Dimension for Hypotheses

= Need upper and lower bounds
= Lower bound: example

= Upper bound: Prove that no set of d + 1 points can be shattered by H
(harder)
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Intervals

What is the VC dimension of [a, b] intervals on the real line.
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Intervals

What is the VC dimension of [a, b] intervals on the real line.
= What about two points?
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Intervals

What is the VC dimension of [a, b] intervals on the real line.
= What about two points?

< + ; + p—
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Intervals

What is the VC dimension of [a, b] intervals on the real line.
= What about two points?
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

= Two points can be perfectly classified, so VC dimension > 2
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What is the VC dimension of [a, b] intervals on the real line.

= Two points can be perfectly classified, so VC dimension > 2

= What about three points?
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

= Two points can be perfectly classified, so VC dimension > 2
= What about three points?

4'1?*'»
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

= Two points can be perfectly classified, so VC dimension > 2
= What about three points?
= No set of three points can be shattered

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 7/11



Intervals

What is the VC dimension of [a, b] intervals on the real line.

Two points can be perfectly classified, so VC dimension > 2

What about three points?

No set of three points can be shattered

Thus, VC dimension of intervals is 2
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Sine Functions

= Consider hypothesis that classifies points on a line as either being
above or below a sine wave

{t > sin(wx): weR} (5)

= Can you shatter three points?
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Sine Functions

= Consider hypothesis that classifies points on a line as either being
above or below a sine wave

{t - sin(wx) : w eR} (5)

= Can you shatter three points?

>
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Sine Functions

= Consider hypothesis that classifies points on a line as either being
above or below a sine wave

{t > sin(wx): weR} (5)

= Can you shatter four points?
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Sine Functions

= Consider hypothesis that classifies points on a line as either being
above or below a sine wave

{t > sin(wx): weR} (5)

= How many points can you shatter?

Jordan Boyd-Graber | UMD Introduction to Machine Learning |



Sine Functions

= Consider hypothesis that classifies points on a line as either being
above or below a sine wave

{t > sin(wx): weR} (5)

= Thus, VC dim of sine on line is 0o
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
SO we can prove generalization bounds.
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
SO we can prove generalization bounds.

Theorem

Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then

YmeN J
I (m) sZ( ) By(m) (6)
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
SO we can prove generalization bounds.

Theorem

Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then
YmeN J
Myy(m) < Z( ) g(m) (6)

This is good because the sum when multiplied out becomes
(M= w = 0 (m?). When we plug this into the learning error limits:

log(Iy(2m)) =log(@ (m°)) = 0 (dlog m).
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Proof of Sauer’'s Lemma

Prelim:
() ="+ (%) This comes from Pascal’s Triangle
(F)=0 if { k<0 This conventlon Is consistent with Pascal’s Triangle
k>m
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Proof of Sauer’'s Lemma

Prelim:

() ="+ (%) This comes from Pascal’s Triangle

(F)=0 if { k<0 This convention is consistent with Pascal’s Triangle
k>m

We'll proceed by induction. Our two base cases are:
= If m=0, II4(m) =1. You have no data, so there’s only one
(degenerate) labeling

» If d=0, ITIy(m) =1. If you can’t even shatter a single point, then it's a
fixed function
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Induction Step

Assume that it holds for all m’, @’ for which m’ + d’ < m+ d. We are given
H, |S|=m, S={xq,...,Xn), and d is the VC dimension of H.
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Induction Step

Assume that it holds for all m’, @’ for which m’ + d’ < m-+ d. We are given
H, |S|=m, S={xq,...,Xn), and d is the VC dimension of H.

Build two new hypothesis spaces

H Hy H

LS RERENE, Kioeres Xm 1 X1 1 X 1
hi ¢ 1 1 0 & — hl O 1 L 0O — &wl O 1 1 0
h2 0 1 1 0 1 7
h3 0 1 1 1 0 — hd 0 1 1 1
hda 1 0 0 1 0 — hd 1 O 0 1 — hwd 1 O 0 1
h5 1 0 0 1 1 7
h6& 1 1 0 0O 1 — héE 1 1 0 O

Encodes where the extended set has differences on the first m points.
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What is VC dimension of H; and H,?

= |f a set is shattered by H,, then it is also shattered by H

VC-dim(H,) < VC-dim(H) = d (7)
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What is VC dimension of H; and H,?

= |f a set is shattered by H,, then it is also shattered by H

VC-dim(H,) < VC-dim(H) = d (7)

= If a set T is shattered by H,, then TN {x,,} is shattered by H since there
will be two hypotheses in H for every element of H, by adding x,,

VC-dim(H,) < d—1 (8)
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Bounding Growth Function

L4 (S)| =IHy| + |Hol 9)

9 (m—1 E(m—1
2w
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Bounding Growth Function

ITT4(S)| =|H;| +|Hol (9)
<i m—1 N m—1 10
= i =\ "o

(11)

We can rewrite this as Z,q:o (',7’:11) because (%) =0.
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Bounding Growth Function

L4 (S)| =IH;| + |Hol 9)
<Z(m 1)+Z(mi1) 10)
i=0 i=0
7))
= N (11)
pury i i—1
(12)
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Bounding Growth Function

IT4(S)| =IH;| + [H,] 9)
< I (m—1) E(m—1 10
2\ +; / (10)

M m—1 m—1
2"+ 05) ™
i=0
d
m
()
i=0
(13)

Pascal’s Triangle
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Bounding Growth Function

[T, (S)| =IH;| + |Hal 9)

9 (m—1 N (m—1
SRS

i=0
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Wait a minute ...

Is this combinatorial expression really @ (m9)?

> (1)< (@)
<2 (D"
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Generalization Bounds

Combining our previous generalization results with Sauer’s lemma, we
have that for a hypothesis class H with VC dimension d, for any 6 > 0 with
probability at least 1 — &, for any he H,

2dlog &7 +\J log 5
m 2m

mm$mw+¢
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Whew!

= We now have some theory down

= We’re now going to see if we can find an algorithm that has good VC
dimension
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= And works well in practice ...
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Whew!

We now have some theory down

We're now going to see if we can find an algorithm that has good VC
dimension

And works well in practice . .. Support Vector Machines

In class: more VC dimension examples
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