
Introduction to Machine Learning

Machine Learning: Jordan Boyd-Graber
University of Maryland
RADEMACHER COMPLEXITY

Slides adapted from Rob Schapire

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 1 / 30



Setup

Nothing new . . .

� Samples S = ((x1,y1), . . . ,(xm,ym))

� Labels yi = {−1,+1}
� Hypothesis h : X →{−1,+1}
� Training error: R̂(h) = 1

m

∑m
i 1 [h(xi) 6= yi ]
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An alternative derivation of training error

R̂(h) =
1

m

m
∑

i

1 [h(xi) 6= yi ] (1)

(2)

(3)

(4)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 3 / 30



An alternative derivation of training error

R̂(h) =
1

m

m
∑

i

1 [h(xi) 6= yi ] (1)

=
1

m

m
∑

i

¨

1 if (h(xi ,yi) == (1,−1) or (−1,1)

0 (h(xi ,yi) == (1,1) or (−1,−1)
(2)

(3)

(4)
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Correlation between predictions and labels
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1
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Minimizing training error is thus equivalent to maximizing correlation

argmax
h

1

m

m
∑

i

yih(xi) (5)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

σi =

¨

+1 with prob .5

−1 with prob .5
(6)

This gives us Rademacher correlation—what’s the best that a random
classifier could do?

R̂S (H)≡Eσ

�

max
h∈H

1

m

m
∑

i

σih(xi)

�

(7)
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classifier could do?
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(7)

Notation: Ep [f ]≡
∑

x p(x)f (x)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 4 / 30



Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

σi =

¨

+1 with prob .5

−1 with prob .5
(6)

This gives us Rademacher correlation—what’s the best that a random
classifier could do?

R̂S (H)≡Eσ

�

max
h∈H

1

m

m
∑

i

σih(xi)

�

(7)

Note: Empirical Rademacher complexity is with respect to a sample.
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Rademacher Extrema

� What are the maximum values of Rademacher correlation?

|H|= 1 |H|= 2m

� Rademacher correlation is larger for more complicated hypothesis
space.

� What if you’re right for stupid reasons?
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Rademacher Extrema

� What are the maximum values of Rademacher correlation?

|H|= 1

h̄(x)Eσ [σi ]
|H|= 2m

� Rademacher correlation is larger for more complicated hypothesis
space.

� What if you’re right for stupid reasons?
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Rademacher Extrema

� What are the maximum values of Rademacher correlation?

|H|= 1

h̄(x)Eσ [σi ] = 0
|H|= 2m

� Rademacher correlation is larger for more complicated hypothesis
space.

� What if you’re right for stupid reasons?
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m
m = 1

� Rademacher correlation is larger for more complicated hypothesis
space.

� What if you’re right for stupid reasons?
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Generalizing Rademacher Complexity

We can generalize Rademacher complexity to consider all sets of a
particular size.

Rm (H) =ES∼Dm

�

R̂S (H)
�

(8)
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Generalizing Rademacher Complexity

Theorem

Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S = (z1, . . . ,zm) were zi ∼D for some distribution D
over Z . Define E [f ]≡Ez∼D [f (z)] and ÊS [f ]≡ 1

m

∑m
i=1 f (zi). With

probability greater than 1−δ for all f ∈ F:

E [f ]≤ Ês [f ] + 2Rm (F) +O

 √

√ ln 1
δ

m

!

(8)
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over Z . Define E [f ]≡Ez∼D [f (z)] and ÊS [f ]≡ 1

m
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i=1 f (zi). With

probability greater than 1−δ for all f ∈ F:

E [f ]≤ Ês [f ] + 2Rm (F) +O

 √

√ ln 1
δ

m

!

(8)

f is a surrogate for the accuracy of a hypothesis (mathematically
convenient)
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Aside: McDiarmid’s Inequality

If we have a function:

|f (x1, . . . ,xi , . . .xm)− f (x1, . . . ,x ′i , . . . ,xm)| ≤ ci (9)

then:

Pr [f (x1, . . . ,xm)≥E [f (X1, . . . ,Xm)] +ε]≤ exp

�

−2ε2

∑m
i c2

i

�

(10)

Proofs online and in Mohri (requires Martingale, constructing
Vk =E [V |x1 . . .xk ]−E [V |x1 . . .xk−1]).
What function do we care about for Rademacher complexity? Let’s define

Φ(S) = sup
f

�

E [f ]− ÊS [f ]
�

= sup
f

�

E [f ]−
1

m

∑

i

f (zi)

�

(11)
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�

= sup
f

�

E [f ]−
1

m

∑

i

f (zi)

�

(11)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 7 / 30



Step 1: Bounding divergence from true Expectation

Lemma

Moving to Expectation With probability at least 1−δ,

Φ(S)≤Es [Φ(S)] +

r

ln 1
δ

2m

Since f (z1) ∈ [0,1], changing any zi to z′i in the training set will change
1
m

∑

i f (zi) by at most 1
m , so we can apply McDiarmid’s inequality with

ε=

r

ln 1
δ

2m and ci = 1
m .
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Step 2: Comparing two different empirical expectations

Define a ghost sample S′= (z′1, . . . ,z′m)∼D. How much can two samples
from the same distribution vary?

Lemma

Two Different Samples

ES [Φ(S)] =ES

�

sup
f

(E [f ]− ÊS [f ])

�

(12)

(13)
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Two Different Samples

ES [Φ(S)] =ES

�

sup
f

(E [f ]− ÊS [f ])

�

(12)

=ES

�

sup
f∈F

(ES′
�

ÊS′ [f ]
�

− ÊS [f ])

�

(13)

(14)

The expectation is equal to the expectation of the empirical expectation of
all sets S′
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�
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�
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�

(14)

(15)

S and S′ are distinct random variables, so we can move inside the
expectation
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�
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The expectation of a max over some function is at least the max of that
expectation over that function
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Step 3: Adding in Rademacher Variables

From S,S′ we’ll create T ,T ′ by swapping elements between S and S′ with
probability .5. This is still idependent, identically distributed (iid) from D.
They have the same distribution:

ÊS′ [f ]− ÊS [f ]∼ ÊT ′ [f ]− ÊT [f ] (15)

Let’s introduce σi :

ÊT ′ [f ]− ÊT [f ] =
1

m

¨

f (zi)− f (z′i ) with prob .5

f (z′i )− f (zi) with prob .5
(16)

=
1

m

∑

i

σi(f (z′i )− f (zi)) (17)

Thus:
ES,S′

�

supf∈F

�

ÊS′ [f ]− ÊS [f ]
��

=ES,S′,σ

�

supf∈F

�∑

iσi(f (z′i )− f (zi))
��

.
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1

m

¨

f (zi)− f (z′i ) with prob .5

f (z′i )− f (zi) with prob .5
(16)

=
1

m

∑

i

σi(f (z′i )− f (zi)) (17)

Thus:
ES,S′

�

supf∈F

�

ÊS′ [f ]− ÊS [f ]
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Step 4: Making These Rademacher Complexities

Before, we had ES,S′,σ

�

supf∈F

∑

iσi(f (z′i )− f (zi))
�

≤ES,S′,σ

�

sup f∈F

∑

i

σi f (z′i ) + sup f∈F

∑

i

(−σi)f (zi)

�

(18)

(19)
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Taking the sup jointly must be less than or equal the individual sup.
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Linearity
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Definition
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Putting the Pieces Together

With probability ≥ 1−δ:

Φ(S)≤ES [Φ(S)] +

√

√ ln 1
δ

2m
(21)

Step 1
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Putting the Pieces Together

With probability ≥ 1−δ:

sup
f

�

E [f ]− ÊS [h]
�

≤ES [Φ(S)] +

√

√ ln 1
δ

2m
(21)

Definition of Φ
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ES [Φ(S)] +

√

√ ln 1
δ

2m
(21)

Drop the sup, still true
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ES,S′

�

sup
f

(ÊS′ [f ]− ÊS [f ])

�

+

√

√ ln 1
δ

2m
(21)

Step 2
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ES,S′,σ

�

sup
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�

∑

i

σi(f (z′i )− f (zi))

��

+

√

√ ln 1
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2m
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Step 3

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 12 / 30



Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ 2Rm (F) +

√

√ ln 1
δ

2m
(21)

Step 4
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ 2Rm (F) +

√

√ ln 1
δ

2m
(21)

Recall that R̂S (F)≡Eσ
�

supf
1
m

∑

iσi f (zi)
�

, so we apply McDiarmid’s
inequality again (because f ∈ [0,1]):

R̂S (F)≤Rm (F) +

√

√ ln 1
δ

2m
(22)
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√

√ ln 1
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Putting the two together:

E [f ]≤ Ês [f ] + 2Rm (F) +O

 √

√ ln 1
δ

m

!

(23)
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What about hypothesis classes?

Define:

Z ≡X ×{−1,+1} (24)

fh(x ,y)≡1 [h(x) 6= y ] (25)

FH ≡{fh : h ∈H} (26)

We can use this to create expressions for generalization and empirical
error:

R(h) =E(x ,y)∼D [1 [h(x) 6= y ]] =E [fh] (27)

R̂(h) =
1

m

∑

i

1 [h(xi) 6= y ] = ÊS [fh] (28)

We can plug this into our theorem!
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error:

R(h) =E(x ,y)∼D [1 [h(x) 6= y ]] =E [fh] (27)

R̂(h) =
1

m

∑

i

1 [h(xi) 6= y ] = ÊS [fh] (28)

We can plug this into our theorem!
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Generalization bounds

� We started with expectations

E [f ]≤ ÊS [f ] + 2R̂S (F) +O

 √

√ ln 1
δ

m

!

(29)

� We also had our definition of the generalization and empirical error:

R(h) =E(x ,y)∼D [1 [h(x) 6= y ]] =E [fh] R̂(h) =
1

m

∑

i

1 [h(xi) 6= y ] = ÊS [fh]

� Combined with the previous result:

R̂S (FH) =
1

2
R̂S (H) (30)

� All together:

R(h)≤ R̂(h) +Rm (H) +O

 √

√ log 1
δ

m

!

(31)
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Wrapup

� Interaction of data, complexity, and accuracy

� Still very theoretical

� Next up: How to evaluate generalizability of specific hypothesis classes
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