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Setup

Nothing new ...

= Samples S= ((x1,¥1),---» (Xm» Ym))

= Labels y; = {—1,+1}

= Hypothesis h: X — {—1,+1}

= Training error: R(h) = ST LIh(x) # yi]
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An alternative derivation of training error

A(R) = > 1 [A(x) £ 1]



An alternative derivation of training error

3-;

_Z]l[h X/ #YI (1)

3

lz’":{1 if (h(x,y;) == (1,—1) or (=1,1) 2

(h(x;,y;)==(1,1) or (—1,—1)

i
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An alternative derivation of training error

R(h) _%Z]l [h(x;) # yi] 0
_lm 1 if (h(x,y,) == (1,—1) or (—1,1)
_mZ{O (h(x;,y;)==(,1) or (—1,—1) (@)

(4)
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An alternative derivation of training error

AR =—> 1 {h(x) £ ] o

1 o [ 1 i (h(x, ) == (1,—1) or (—1,1) 2
m — 10 (h(x,y;)==(1,1)0r(—1,-1)
_IN1 yih(x) .
m & P
_2 om - Yi i
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An alternative derivation of training error

R(h) :%Z]l [h(x;) # yi] (1)

:li{1 it (h(x,y;) == (1,—1) or (—1,1)

m 0 (h(x;,y;)==(1,1)or(—1,—1)

1 i 1—y;h(x;) @)
m I. 2

5_%2% I (4)

Correlation between predictions and labels

i
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An alternative derivation of training error

= Zﬂ[h X)) # v (1)
i 1 if ( h(x,,y, ==(1,—-1) or (—1,1) )
i X/r,VI (171) (_1’_1)

_! Z —yih (3)

2

— any/'h(xi) (4)

Minimizing training error is thus equivalent to maximizing correlation

1 m
argmax — Zy/‘h(xi) (5)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

+1 with prob .5
—1  with prob .5
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

1 ith prob .5
Ui:{-l- with pro )

—1  with prob .5

This gives us Rademacher correlation—what’s the best that a random
classifier could do?

'@S(H)EEU

1 m
fpéi&(;zo'ih(xi)] @)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

1 ith prob .5
0'i={+ with pro ©)

—1  with prob .5

This gives us Rademacher correlation—what’s the best that a random
classifier could do?

Rs(H)=E, nax—
i

maleO',-h(x,-)] (7)

Notation: E, [f] =Y, p(x)f(x)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

+1 with prob .5
oj= . (6)
—1  with prob .5
This gives us Rademacher correlation—what’s the best that a random
classifier could do?
1 m
Rs(H)=E, TS‘,};Z""”(XI')] (7)

Note: Empirical Rademacher complexity is with respect to a sample.
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Rademacher Extrema

= What are the maximum values of Rademacher correlation?
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Rademacher Extrema

= What are the maximum values of Rademacher correlation?
|H| =1

S =2
E, [maxheH = O',h(x,-)]
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Rademacher Extrema

= What are the maximum values of Rademacher correlation?
|H[ =1

|H| = 2m
15 Z,m h(Xi)]Eo' [Ui]
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Rademacher Extrema

= What are the maximum values of Rademacher correlation?
|H| =1

_ |H| =2m
h(x)Eq [o]
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Rademacher Extrema

= What are the maximum values of Rademacher correlation?
|H| =1

- |H|=2"
h(x)E; [0/] =0
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Rademacher Extrema

= What are the maximum values of Rademacher correlation?
|H =1 |H| =27
E(X)Eo- [0',] =0 ]Eg- [maxheH 15 Z:n O'ih(X,')]
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Rademacher Extrema

= What are the maximum values of Rademacher correlation?

|H| =1 |H| =27
E(X)Ea [o] =0 % =1
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Rademacher Extrema

= What are the maximum values of Rademacher correlation?

|H| =1 |H| =27
E(X)Ea [o] =0 % =1

= Rademacher correlation is larger for more complicated hypothesis
space.

= What if you're right for stupid reasons?
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Generalizing Rademacher Complexity

We can generalize Rademacher complexity to consider all sets of a
particular size.
R (H) =Egopn [ %25 (H)] (8)
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Generalizing Rademacher Complexity

Theorem

Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S = (z, ..., z,) were z; ~ D for some distribution D
over Z. Define E [f] =E,.p[f(2)] and Es[f]= £ >, f(z;). With
probability greater than1—0 forall f€ F:

E[f]S]Es[f]+2%m(F)+ﬁ( %) (8)
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Generalizing Rademacher Complexity

Theorem

Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S = (z, ..., z,) were z; ~ D for some distribution D
over Z. Define E [f]| =E,.p [f(2)] and Es[f]= 1 > . f(z). With
probability greater than1—0 forall f€ F:

]E[f]S]Es[f]-i-Z%m(F)-l-ﬁ( %) (8)

f is a surrogate for the accuracy of a hypothesis (mathematically
convenient)
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Aside: McDiarmid’s Inequality

If we have a function:
X1y s Xir o X)) = F(Xps oo s X s X)) S (9)

then:

—2¢?
Pr[f(x1,...,xm)2]E[f(X1,...,Xm)]+e]Sexp{ — } (10)
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Aside: McDiarmid’s Inequality

If we have a function:

X1y s Xir o X)) = F(Xps oo s X s X)) S (9)

then:

Prif(xs,...,xm) = E[f(Xq,..., X )]+6]<exp{ (10)

)

Proofs online and in Mohri (requires Martingale, constructing
Vk =E [V|X1 ...Xk]—]E [V|X1 --'Xk—1])'
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Aside: McDiarmid’s Inequality

If we have a function:

X1y s Xir o X)) = F(Xps oo s X s X)) S (9)

then:

Prif(xs,...,xm) = E[f(Xq,..., X )]+6]<exp{ (10)

)

Proofs online and in Mohri (requires Martingale, constructing
Vk =E [V|X1 ...Xk]—]E [V|X1 --'Xk—1])'
What function do we care about for Rademacher complexity? Let’s define

o(S) = sup(E[1]-Es [f])zsgp(E [f]—%zf(z/)) (11)

i
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Step 1: Bounding divergence from true Expectation

Lemma
Moving to Expectation With probability at least1— 6,

() <Eg[®(S)] + 1/ 52

Since f(z1 ) €[0,1], changing any z; to z in the training set will change

%., Z f(z;) by at most l, so we can apply McDiarmid’s inequality with
1

€= ' 2 and ¢; =
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Step 2: Comparing two different empirical expectations

Define a ghost sample 8’ = (Z,...,z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma

Two Different Samples

Es[8(5)] ~Es | sup(E [1]~Es (1) (12
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Step 2: Comparing two different empirical expectations
Define a ghost sample S’ = (Z}, ..., z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma

Two Different Samples

Es[8(S)] =Es [sgpm[f]—ﬁs[f])] (12)
=Es [ngg(ES/ [Eg [f]]—Es [f])] (13)
(14)

The expectation is equal to the expectation of the empirical expectation of
all sets &'
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Step 2: Comparing two different empirical expectations

Define a ghost sample 8’ = (Z,...,z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma
Two Different Samples

B [0(S)) —Es|sup(E 1~ Es[1) (12)
—5s sup(Es [£5 [1]-Es 1) (13)

=Es _sfg,g(lES/ [Eg [f]—Es [f]])] (14)

(15)

S and &’ are distinct random variables, so we can move inside the
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Step 2: Comparing two different empirical expectations

Define a ghost sample S’ = (Z;,..., /) ~ D. How much can two samples

from the same distribution vary?

Lemma

Two Different Samples

Es[8(S)] =Es [sgpm[f]—ﬁs[f])] (12)
=Eg [ngE(ES/ [IE:S’ [f]—Es [f]])] (13)
<Ess [sgp(lﬁg [f]—fas[fl)] (14)

The expectation of a max over some function is at least the max of that
expectation over that function
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Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D.
They have the same distribution:

Eg []-Es[f]~Er [f]—Er[f] (15)
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Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D.
They have the same distribution:

Eg []-Es[f]~Er [f]—Er[f] (15)

Let’s introduce o;:

. & orq 1 f(z:)—£(Z]) with prob .5
Erif=Erlf =1 {f(z,.’)—f(z,) with prob .5 19)
1 /
:;Za,(f(z,)—f(z,)) (17)
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Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D.
They have the same distribution:

Eg []-Es[f]~Er [f]—Er[f] (15)

Let’s introduce o;:

. & orq 1 f(z:)—£(Z]) with prob .5
Er =Ll m {f(z,.’)—f(z,) with prob .5 19)
1 /
:EZai(f(zi)—f(z,)) (17)

Thus:
Es s [suprer (Es [f]—Es[f])] = Es,s,0 [suprer (3 0i(f(2]) — £(2)))]-
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Step 4: Making These Rademacher Complexities

Before, we had Eg ¢ [supser >, 0i(f(2)) — ()]
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Step 4: Making These Rademacher Complexities

Before, we had Es ¢ [suprer >, 0i(f(2)) — 1(2))]

I

<Ess,o SUpfeFZUIf(zi/) + SUpfeFZ(—Uf)f(Z/) (18)
7
(19)

Taking the sup jointly must be less than or equal the individual sup.
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Step 4: Making These Rademacher Complexities

Before, we had Eg ¢ [supser >, 0i(f(2]) — ()]

<Esgs,o [SUpfeFZUif(zjl) + suprer Z(—Ui)f(zi)] (18)

1

+Ess,0 lsngZ(—Ui)f(zi)] (19)

(20)

<Ess .o lsupZa,f(z{)
feF <

Linearity
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Step 4: Making These Rademacher Complexities

Before, we had ]ES,S’,O' [Supfep Zi U,(f(ZI/) — f(Z,))]
<Ess o [SUpfeFZU f(Z) + SUpfeFZ(_UI)f(Zi)] (18)

S;ggzo,-f(%) +ES,S’,al§gEZ(_Gi)f(Zi)] (19)

=R (F) + R (F) (20)

<Ess,o

Definition
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Putting the Pieces Together

With probability > 1—6:

®(S) <Eg[®(9)]+ 2—5 (21)

Step 1
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Putting the Pieces Together

With probability > 1—9:

sgp(E [f]—Es[h]) <Es[@(S)]+

Definition of ®
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Putting the Pieces Together

With probability > 1—0:

E [f]-Es[h] <Es[®(S)] +

Drop the sup, still true
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|n3

(21)
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Putting the Pieces Together

With probability > 1—9:

1
|n3

B[-Bslh <Ess [sun(Es [1-Bs[1)] +

(21)
m
Step 2
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Putting the Pieces Together

With probability > 1—§:

+\ — (21)

E[f]-Es[A <Ess o [ng,'_? (Z oi(f(z)— f(Z/))>

Step 3
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Putting the Pieces Together

With probability > 1—6:

E[f]—Bs[n] < 2%, (F) + ng

Step 4
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Putting the Pieces Together

With probability > 1—6:

E[f]-KEs[n] <22, (F)+

5
— 21
om (21)
Recall that Zg (F) =E, [sup, 15 Z,a,-f(z,-)], so we apply McDiarmid’s
inequality again (because f € [0, 1]):
R (F) < R (F) ng 22
S m + om ( )
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Putting the Pieces Together
With probability > 1—9:

E[f]-KEg[n] <2%,,(F)+ %

Recall that Zg (F) =E,, [sup, %ZIO';f(Z,-)], so we apply McDiarmid’s
inequality again (because f € [0, 1]):

In=
Rs(F) < Rm(F)+\ 32
Putting the two together:

(22)

A Ini
E[f] < B [f] + 22, (F) + 0( 75)
Machine Learning: Jordan Boyd-Graber | UMD
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What about hypothesis classes?

Define:
Z=Xx{—1,+1} (24)
fa(x,y) =L [h(x) # y] (25)
Fy={f,: he H} (26)
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What about hypothesis classes?

Define:
Z=Xx{—1,+1} (24)
fa(x,y) =L[h(x) £ y] (25)
Fy={f,: he H} (26)
We can use this to create expressions for generalization and empirical
error:
R(h) =E(xy)~o[L [A(x) # Y]] =E[f] (27)
o 1 .
) = 2 1 106) # 71 = Es )] (28)
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What about hypothesis classes?

Define:
Z=Xx{—1,+1} (24)
fa(x,y) =L [h(x) # y] (25)
Fy={f,: he H} (26)

We can use this to create expressions for generalization and empirical
error:

() =By~ 1180 £ 1] =E 5] @7
) = > 1[h(x) £ ] =Es 1) 29

We can plug this into our theorem!
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Generalization bounds

= We started with expectations

E[f]sﬁs[f]+29§s(F)+0( %) (29)

= We also had our definition of the generalization and empirical error:

PN

AR) =E(uyy-olL00) £V =E ] AR = > 1 [4(x) £ 1= Es[f

= Combined with the previous result:

N 1 A
Rs(Fu) = 5935("/) (30)

= All together:
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Wrapup

= [nteraction of data, complexity, and accuracy
= Still very theoretical
= Next up: How to evaluate generalizability of specific hypothesis classes
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