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Content Questions
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Quiz!
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Admin Questions

� Writeup must fit in one page

� Unit tests are not comprehensive

� Don’t break autograder

� HW3 due next week

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 4 / 13



PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM),
36(4):929?965, 1989
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What’s the learning algorithm

Call this hS , which we learned from data. hs ∈ c
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Proof
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Let c ≡ [b, t]× [l , r ].
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Proof

Let c ≡ [b, t]× [l , r ]. By construction, hS ∈ c, so it can only give false
negatives. The region of error is precisely c \hS . WLOG, assume
P(R)≥ ε. Consider rectangles R1 . . .R4:

We get a bad hS only if we have an observation fall in this region. So let’s
bound this probability.
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Bounds

Pr[error ] =Pr[ä4
i=1x 6∈Ri ] (1)

≤
4
∑

i=1

Pr[x 6∈Ri ] (2)

=
4
∑

i=1

(1−P(Ri))m (3)

If we assume that P(Ri)≥ ε4 , then

Pr[error ]≤ 4
�

1−
ε

4

�m
≤ 4 ·exp

n

−
mε

4

o

(4)

Solving for m gives

m≥
4 ln4/δ

ε
(5)
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Concept Learning

Are Boolean conjunctions PAC learnable? Think of every feature as a
Boolean variable; in a given example the variable is given the value 1 if its
corresponding feature appears in the examples and 0 otherwise. In this
way, if the number of measured features is n the concept is represented as
a Boolean function c : {0,1} 7→ {0,1}. For example we could define a chair
as something that has four legs and you can sit on and is made of wood.
Can you learn such a conjunction concept over n variables?

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 9 / 13



Algorithm

Start with
h = x̄1x1x̄2x2 . . . x̄nxn (6)

(say no to everything) For every positive example you see, remove the
negation of all dimensions present in that example. Example: 10001,
11001, 10000, 11000

� After first example, x1x̄2x̄3x̄4x5

� After last example, x1x̄3x̄4
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Observations

� Having seen no data, h says no to everything

� Our algorithm can be too specific. It might not say yes when it should.

� We make an error on a literal if we’ve never seen it before (there are 2n
literals: x1, x̄1)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 11 / 13



Observations

� Having seen no data, h says no to everything

� Our algorithm can be too specific. It might not say yes when it should.

� We make an error on a literal if we’ve never seen it before (there are 2n
literals: x1, x̄1)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 11 / 13



Observations

� Having seen no data, h says no to everything

� Our algorithm can be too specific. It might not say yes when it should.

� We make an error on a literal if we’ve never seen it before (there are 2n
literals: x1, x̄1)

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 11 / 13



Solving for number of examples

General learning bounds for consistent hypotheses

m≥
1

ε

�

ln |H|+ ln
1

δ

�

(7)

m≥
1

ε

�

n · ln3 + ln
1

δ

�

(8)
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3-DNF

Not efficiently learnable unless P = NP.
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