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Admin Questions

Writeup must fit in one page

Unit tests are not comprehensive

Don’t break autograder
HWS3 due next week
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PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?
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PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM),
36(4):9297965, 1989
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What’s the learning algorithm
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What’s the learning algorithm

Call this hg, which we learned from data. hg € ¢
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Proof
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Proof

Let c=[b, t] x [/,r].
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Proof

Letc=[b,t] x[/,r]. By construction, hg € ¢, so it can only give false
negatives.
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Proof

Letc=[b,t] x[/,r]. By construction, hg € ¢, so it can only give false
negatives. The region of error is precisely ¢\ hs.
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Proof

Letc=[b,t] x[/,r]. By construction, hg € ¢, so it can only give false
negatives. The region of error is precisely ¢\ hs. WLOG, assume
P(R)>e.
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Proof

Letc=[b,t] x[/,r]. By construction, hs € c, so it can only give false
negatives. The region of error is precisely ¢\ hs. WLOG, assume
P(R)>e€. Consider rectangles R; ... Ry:
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Proof

Letc=[b,t] x[/,r]. By construction, hs € ¢, so it can only give false
negatives. The region of error is precisely ¢\ hg. WLOG, assume
P(R)>e€. Consider rectangles Ry ...Ry:
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We get a bad hg only if we have an observation fall in this region. So let's
bound this probability.
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Bounds

Prlerror] =Pr[U_,x ¢ R)] (1)

4
SZPr[xgé R 2
=1

= (1=P(R))" ©
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Bounds

Pr[error] :Pr[U?:1 x & Ry (1)
4

<> Prix¢R] (2)
i=1

= (1=P(R))" ©

If we assume that P(R;) > ¢, then

Pr[error] §4(1 —S)m34-exp {—?} (4)
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Bounds

Prlerror] =Pr[U_,x ¢ R)] (1)
4
<> Prix¢A] &)
i=1
4
=> (1—P(R))" 3)
i=1
If we assume that P(R;) > ¢, then
e\m me
Pr[error] §4(1 ——) <4-exp {——} (4)
4 4
Solving for m gives
4In4/s
mz— (5)
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Concept Learning

Are Boolean conjunctions PAC learnable? Think of every feature as a
Boolean variable; in a given example the variable is given the value 1 if its
corresponding feature appears in the examples and 0 otherwise. In this
way, if the number of measured features is n the concept is represented as
a Boolean function ¢: {0,1} — {0, 1}. For example we could define a chair
as something that has four legs and you can sit on and is made of wood.
Can you learn such a conjunction concept over n variables?
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Algorithm

Start with
h:)aX1)?2X2...)?an (6)

(say no to everything)
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Algorithm

Start with
h:)aX1)?2X2...)?an (6)

(say no to everything) For every positive example you see, remove the
negation of all dimensions present in that example.
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Algorithm

Start with
h:)aX1)?2X2...)?an (6)

(say no to everything) For every positive example you see, remove the
negation of all dimensions present in that example. Example: 10001,
11001, 10000, 11000
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Algorithm

Start with
h:)aX1)?2X2...)?an (6)

(say no to everything) For every positive example you see, remove the
negation of all dimensions present in that example. Example: 10001,
11001, 10000, 11000

= After first example, xq Xo X3 X4 X5
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Algorithm

Start with
h:)aX1)?2X2...)?an (6)

(say no to everything) For every positive example you see, remove the
negation of all dimensions present in that example. Example: 10001,
11001, 10000, 11000

= After first example, xq Xo X3 X4 X5

= After last example, X X3 X4
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Observations

= Having seen no data, h says no to everything
= QOur algorithm can be too specific. It might not say yes when it should.
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Observations

= Having seen no data, h says no to everything
= QOur algorithm can be too specific. It might not say yes when it should.

= We make an error on a literal if we’ve never seen it before (there are 2n
literals: xy, X3)
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Solving for number of examples
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Solving for number of examples

General learning bounds for consistent hypotheses

mzl(lanl—l—Inl) (7)
€ )
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Solving for number of examples

General learning bounds for consistent hypotheses

m> 1(IanI—i—In l) (7)
€ 0
1 1

mz—(n-ln3+ln—) (8)
€ o
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3-DNF
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3-DNF

Not efficiently learnable unless P = NP.
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