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What does it mean to learn something?

= What are the things that we're learning?
= What does it mean to be learnable?

= Provides a framework for reasoning about what we can theoretically
learn
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What does it mean to learn something?

= What are the things that we're learning?
= What does it mean to be learnable?

= Provides a framework for reasoning about what we can theoretically
learn

o Sometime theoretically learnable things are very difficult
o Sometimes things that should be hard actually work

Machine Learning: Jordan Boyd-Graber | UMD

Introduction to Machine Learning | 2/11



Example

= Californian just moved to Colorado
= When is it “nice” outside?

= Has a perfect thermometer, but
natives call 50F (10C) “nice”
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Example

= Californian just moved to Colorado
= When is it “nice” outside?

= Has a perfect thermometer, but
natives call 50F (10C) “nice”

= Each temperature is an
observation x

= Coloradan concept of “nice” ¢(x)

= Californian wants to learn
hypothesis h(x) close to ¢(x)
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Example

= Californian just moved to Colorado
= When is it “nice” outside?

= Has a perfect thermometer, but
natives call 50F (10C) “nice”

= Each temperature is an
observation x

= Coloradan concept of “nice” ¢(x)

= Californian wants to learn
hypothesis h(x) close to ¢(x)

Generalization error

R(h) = Pryp [h(x) # c(X)] = Ex~p [1 [A(x) # c(X)]] (1)

Notation 1 (x| = 1 iff x is true, 0 otherwise
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Probably Correct

The Californian gets n random examples.

I e e S E— —
10 30 50 70 90
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Probably Correct

The Californian gets n random examples.
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Probably Correct

The best rule that conforms with the examples is [a, b].
= = F b o .|. } =
10 30 \EO 70 JBO

a b
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Probably Correct

oo
10 30\_\;50 70/#9J

a

Let [c, d] be the correct (unknown) rule. Let A be the gap between. The
probability of being wrong is the probability that n samples missed
Aca and Abd'
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PAC-learning definition

Definition
PAC-learnable A concept C is PAC-learnable if 3 algorithm .</ and a
polynomial function f such that for any € and 8, YD(X) and ce C

Prs.pm[R(hs) < €]>1—0 2)

for any sample size m>f(1, ,n,|c|)
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PAC-learning definition

Definition
PAC-learnable A concept C is PAC-learnable if 3 algorithm .</ and a
polynomial function f such that for any € and &, YD(X) and ce C

Prs.pm[R(hg) < €]=1—6 2)

for any sample size m> f(, 1, n,|c|)

The sample we learn from
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PAC-learning definition

Definition
PAC-learnable A concept C is PAC-learnable if 3 algorithm .</ and a
polynomial function f such that for any € and &, YD(X) and ce C

Prs.om[R(hg) < €]=1—06 2)

for any sample size m> f(, 1, n,|c|)

The data distribution the sample comes from
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PAC-learning definition

Definition
PAC-learnable A concept C is PAC-learnable if 3 algorithm .</ and a
polynomial function f such that for any € and &, YD(X) and ce C

Prs.pm[R(hs) < €]=1—6 2)

for any sample size m> f(, 1, n,|c|)

The hypothesis we learn
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PAC-learning definition

Definition
PAC-learnable A concept C is PAC-learnable if 3 algorithm .¢/ and a
polynomial function f such that for any € and &, YD(X) and ce C

Prs.pn[R(hs) < €]>1—6 (2)

for any sample size m> f(2, £, n,|cl)

Generalization error
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PAC-learning definition

Definition
PAC-learnable A concept C is PAC-learnable if 3 algorithm ./ and a
polynomial function f such that for any € and 8, YD(X) and c€ C

Prg.pn [R(hg) < €]>1—6 @)

for any sample size m> f(2, 1,n,|c|)

Our bound on the generalization error (e.g., we want it to be better than 0.1)
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PAC-learning definition

Definition
PAC-learnable A concept C is PAC-learnable if 3 algorithm ./ and a
polynomial function f such that for any € and 8, YD(X) and c€ C

Prg.on [R(hs) < €]>1—6 @)

for any sample size m> f(2, 1,n,|c|)

The probability of learning a hypothesis with error greater than € (e.g., 0.05)
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Is a Californian learning temperature PAC learnable?

= Bad event happens if no training point in A, or Apy.

PI’[X1 ¢Aca/\"'/\xm ¢Aca] =I_[PT[X,-¢A03] (3)

= We want the probability of a point landing there (or to be less than €

Pr[x1¢Aca/\“'/\xm¢Aca]:(1—6)’”39_6’” (4)
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Is a Californian learning temperature PAC learnable?

= Bad event happens if no training point in A, or Apg.

Pr[x1 ¢Aca/\"'/\xm ¢Aca] :I—[Pr[XI¢Aca] )

Independence!
= We want the probability of a point landing there (or to be less than €

Prix; € Aga A AXm & Aga] = (1—€)" < &7 ()
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Is a Californian learning temperature PAC learnable?

= Bad event happens if no training point in A, or Apg.

Pr[X1 EDAga N A Xy ¢Aca] :l_[Pr[Xi¢Aca] )

= We want the probability of a point landing there (or to be less than €
Pr[X1¢Aca/\"'/\xm¢Aca]:(1_6)mse_€m (4)

Useful inequality: 1 + x < &*

Graph for 1+x, e*x

+ 40 x0 y1
.
=
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Is a Californian learning temperature PAC learnable?

= Bad event happens if no training point in A, or Ap,.

PI’[X1 ¢Aca/\"'/\xm ¢Aca] =I_[PT[X,-¢A03] (3)

= We want the probability of a point landing there (or to be less than €
Pr[)ﬁ§éAca/\"'/\Xm¢Aca]:(-l_e)mse_em (4)

= We want the generalization to violate € less than &, solving for m:

Pr[R(h) > €] <6 (5)
2 “"<6 (6)
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Is a Californian learning temperature PAC learnable?

= Bad event happens if no training point in A, or Ap,.

PI’[X1 ¢Aca/\"'/\xm ¢Aca] =I_[PT[X,-¢A03] (3)

= We want the probability of a point landing there (or to be less than €
Pr[X1¢Aca/\"'/\xm¢Aca]:(1_6)mse_€m (4)

= We want the generalization to violate € less than &, solving for m:

Pr[R(h) > €] <o (5)

267" <§ ) Analysis is symmetrical for A and
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Is a Californian learning temperature PAC learnable?

= Bad event happens if no training point in A, or Ap,.
m
PI’[X1 ¢Aca/\"'/\xm ¢Aca] :I—[Pr[XI¢Aca] 3)
i

= We want the probability of a point landing there (or to be less than €
Pr[X1¢Aca/\"'/\xm¢Aca]:(1_6)mge_€m (4)

= We want the generalization to violate € less than &, solving for m:

Pr[R(h) > €] <o (5)
2¢"<o (6) 0 corresponds to the probability of
5 .
—em<In > 7) bad hypothesis

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 6/11



Is a Californian learning temperature PAC learnable?

= Bad event happens if no training point in A, or Ap,.

PI’[X1 ¢Aca/\"'/\xm ¢Aca] =I_[PT[X,-¢A03] (3)

= We want the probability of a point landing there (or to be less than €
Pr[X1¢Aca/\"'/\xm¢Aca]:(1_6)mse_€m (4)

= We want the generalization to violate € less than &, solving for m:

Pr[R(h) > €] <o (5)

2 “"<6 (6)
5 Take log of both sides
2
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Is a Californian learning temperature PAC learnable?

= Bad event happens if no training point in A, or Ap,.

PI’[X1 ¢Aca/\"'/\xm ¢Aca] =I_[PT[X,-¢A03] (3)

= We want the probability of a point landing there (or to be less than €
Pr[X1¢Aca/\"'/\xm¢Aca]:(1_6)mse_€m (4)

= We want the generalization to violate € less than &, solving for m:

Pr[R(h) > €] <6 (5)
2e <o © Direction of inequality flips when
—em< |ng 7) you divide by —m
finz<m (®)
€ 0
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Consistent Hypotheses, Finite Spaces

= Possible to prove that specific problems are learnable (and we will!)
= Can we do something more general?
= Yes, for finite hypothesis spaces ce H

= That are also consistent with training data

Theorem

Learning bounds for finite H, consistent Let H be a finite set of functions
mapping from & to % . Let .<f be an algorithm that for a iid sample S
returns a consistent hypothesis (training error R(h) = 0), then for any
€,0 > 0, the concept is PAC learnable with samples

mzl(lanl-l—Inl) 9)
€ 0
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Proof: Setup

We want to bound the probability that some h € H is consistent and has
error more than €.

Pr[3he H: R(h) =0AR(h) > €] (10)
=Pr[(hy € HAR(h)=0AR(h)>€)V---V(h e HAR(h) =0AR(h) > €]
<> Pr[A(h)=0AR(h) > €] (11)
<> Pr[A(h)=0|R(h)> €] (12)
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Proof: Setup

We want to bound the probability that some h € H is consistent and has
error more than €.

Pr[3he H: R(h) =0AR(h) > €] (10)
=Pr[(h; e HAR(h)) =0AR(hy) > €)V---V(h e HAR(h) =0AR(h) > €)]
<> Pr[A(h)=0AR(h)> €] (11)

h
<> PrlA(n)=0|R(h)> €] (12)

h
Union bound
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Proof: Setup

We want to bound the probability that some he€ H is consistent and has
error more than €.

Pr[3he H: R(h) =0AR(h) > €] (10)
=Pr[(h; e HAR(h)) =0AR(hy) > €)V---V(h e HAR(h) =0AR(h) > €)]
<> Pr[A(h)=0AR(h)> €] (11)
<> Pr[A(h)=0|R(h) > €] (12)

Definition of conditional probability
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Proof: Connection back to interval learning

The generalization error is greater than €, so we bound probability of no
inconsistent points in training for a single hypothesis h.

Pr[R(h)=0|R(h)>€e]<(1—€)" (13)
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Proof: Connection back to interval learning

The generalization error is greater than €, so we bound probability of no
inconsistent points in training for a single hypothesis h.

Pr[R(h)=0|R(h)>€e]<(1—€)" (13)
but this must be true of all of the hypotheses in H,

Pr[3he H: R(h)=0AR(h)> €| <|H|(1—€)" (14)
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Proof: Connection back to interval learning

The generalization error is greater than €, so we bound probability of no
inconsistent points in training for a single hypothesis h.

Pr[R(h)=0|R(h)>€]<(1—€)" (13)
but this must be true of all of the hypotheses in H,

Pr[3he H: R(h) =0AR(h) > €] < |HI(1—€)" (14)

IHI(1—€)" <|Hle™™ =6 we set the RHS to be equal to &
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Proof: Connection back to interval learning

The generalization error is greater than €, so we bound probability of no
inconsistent points in training for a single hypothesis h.

Pr[R(h)=0|R(h)>€e]<(1—¢)" (13)
but this must be true of all of the hypotheses in H,

Pr[3he H: R(h) =0AR(h)> €| <|H|(1—€)™ (14)

|H|(1—€)" <|H|le"™ =&

apply log to both sides
Ind =In|H|—me PPy 109
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Proof: Connection back to interval learning

The generalization error is greater than €, so we bound probability of no
inconsistent points in training for a single hypothesis h.

Pr[R(h) =0|R(h)>€]<(1—€)" (13)
but this must be true of all of the hypotheses in H,

Pr[3he H: R(h) =0AR(h)> €| <|H|(1—€)™ (14)

HI(1—€)" < |Hle™ =5

move In|H]| to the other side, and
IN6 =In|H|—me

rewrite In6 =—0—(—Ind) =

—In%—lnIHI:—me —1(In1=In&)=—In(3)
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Proof: Connection back to interval learning
The generalization error is greater than €, so we bound probability of no

inconsistent points in training for a single hypothesis h.
Pr[R(h)=0|R(h)>€e]<(1—€)™ (13)
but this must be true of all of the hypotheses in H,

Pr[3he H: R(h) =0AR(h) > €] < |HI(1—€)" (14)

|HI(1—€)" <|H|le"™ =&
Ind =In|H|—me
1 Divide by —e
—Ing—lanl =—me

1 (In|H|+In1)—m
=)=

€
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But what does it all mean?

1 1
mZ—(IanI—l—In—) (15)
€ )

= Confidence
= Complexity
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But what does it all mean?

1 1
mZ—(IanI—l—In—) (15)
€ o

= Confidence: More certainty means more training data
= Complexity
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But what does it all mean?

1 1
>—(InlHl +In—= 1
m_e(nl |+n5) (15)

= Confidence: More certainty means more training data
= Complexity: More complicated hypotheses need more training data
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But what does it all mean?

1 1
>—(In|H|+In—= 1
m_e(nl |+n5) (15)

= Confidence: More certainty means more training data
= Complexity: More complicated hypotheses need more training data

Scary Question

What's |H| for logistic regression?
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What'’s next ...

= |n class: examples of PAC learnability
= Next time: how to deal with infinite hypothesis spaces
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What'’s next ...

= |n class: examples of PAC learnability

= Next time: how to deal with infinite hypothesis spaces
= Takeaway

o Even though we can’t prove anything about logistic regression, it still works
o However, using the theory will lead us to a better classification technique:
support vector machines
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