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Roadmap

= What machine learning is
= What machine learning can do
= What the course is about
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Data are everywhere.
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Social networks
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Data can help us solve problems.

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 11/38



Mathematical Foundations

Data Answers Hidden Structure

X Y Z
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Will NetFlix user 24601 like Transformers?
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Will NetFlix user 24601 like Transformers?
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How do you know?
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Group many images and determine the number of groups
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Which genes are associated with a disease? How can expression values be

used to predict survival?
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Is it likely that this stock was traded based on illegal insider information?
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Who will vote and for whom?
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Is this spam?

Subject: CHARITY.

Date: February 4, 2008 10:22:25 AM EST
To: undisclosed-recipients:;

Reply-To: s.polla@yahoo.fr

Dear Beloved,

My name is Mrs. Susan Polla, from ITALY. If you are a christian and
interested in charity please reply me at : (s.polla@yahoo.fr) for insight.
Respectfully,

Mrs Susan Polla.
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Where are the faces?
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Data contain patterns
that can help us solve problems.




This Course (Machine Learning)

We will study algorithms that find and exploit patterns in data.

= These algorithms draw on ideas from statistics and computer science.
= Applications include

o natural science (e.g., genomics, neuroscience)

o web technology (e.g., Google, NetFlix)

o finance (e.g., stock prediction)

o policy (e.g., predicting what intervention X will do)

o and many others
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This Course (Machine Learning)

We will study algorithms that find and exploit patterns in data.

= Goal: fluency in thinking about modern machine learning problems.

= We will learn about a suite of tools in modern data analysis.
o When to use them
o The assumptions they make about data
o Their capabilities, and their limitations
o Theoretical guarantees

= We will learn a language and process for of solving data analysis
problems. On completing the course, you will be able to learn about a
new tool, apply it data, and understand the meaning of the result.
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Basic idea behind everything we will study

1. Collect or happen upon data.
2. Analyze it to find patterns.
3. Use those patterns to do something.

learning
algorithm

> predictor 4.3 stars
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How the ideas are organized

Of course, there is no one way to organize such a broad subject.
These concepts will recur through the course:

= Probabilistic foundations

= Supervised learning (more of this)

= Unsupervised learning (less of this)

= Methods that operate on discrete data (more of this)

= Methods that operate on continuous data (less of this)
= Representing data / feature engineering

= Evaluating models

= Understanding the assumptions behind the methods
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Supervised vs. unsupervised methods

¥
2 -1 0 1 2 3

= Supervised methods find patterns in fully observed data and then try
to predict something from partially observed data.

= For example, we might observe a collection of emails that are
categorized into spam and not spam.

= After learning something about them, we want to take new email and
automatically categorize it.

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 26/38



Supervised vs. unsupervised methods

wg

= Unsupervised methods find hidden structure in data, structure that
we can never formally observe.

= E.g., a museum has images of their collection that they want grouped by
similarity into 15 groups.

= Unsupervised learning is more difficult to evaluate than supervised
learning. But, these kinds of methods are widely used.
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Discrete vs. continuous methods

jzﬂﬂmz

= Discrete methods manipulate a finite set of objects
o e.g., classification into one of 5 categories.

= Continuous methods manipulate continuous values
o e.g., prediction of the change of a stock price.
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One useful grouping

| discrete continuous
supervised classification regression
unsupervised | clustering dimensionality reduction
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One useful grouping

| discrete continuous
supervised classification regression
unsupervised | clustering dimensionality reduction

Classification

SVM, naive Bayes, logistic regression, boosting
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One useful grouping

| discrete continuous
supervised classification regression
unsupervised | clustering dimensionality reduction

Clustering

k-means, latent Dirichlet allocation
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One useful grouping

| discrete continuous
supervised classification regression
unsupervised | clustering dimensionality reduction

Regression

Linear Regression, Ridge Regression, Lasso
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One useful grouping

| discrete continuous
supervised classification regression
unsupervised | clustering dimensionality reduction

Dimensionality Reduction
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One useful grouping

| discrete continuous
supervised classification regression
unsupervised | clustering dimensionality reduction

Other

Reinforcement Learning, Ranking, Structured Prediction
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Data representation (feature engineering)

— (15,32,-51,...,42)

Republican nominee

George Bush said he felt

nervous as he voted (1,0,0,0,5,0,9,3,1, ..., 0)
today in his adopted

home state of Texas,

where he ended...
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Understanding assumptions

SR

The methods we’ll study make assumptions about the data on which
they are applied. E.g.,

o Documents can be analyzed as a sequence of words;

o or, as a “bag” of words.

o Independent of each other;

o or, as connected to each other

What are the assumptions behind the methods?

When/why are they appropriate?

Much of this is an art
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A Simple Example

= Suppose you're a big company monitoring the web
= Someone says something about your product (x)
= You want to know whether they’re positive (y = +1) or negative (y =—1)
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Train
Apple makes great laptops — (+1)
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Train
Apple makes great laptops — (+1)

Test
Apple makes great laptops
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Train
Apple makes great laptops — (+1)

Test

Apple really makes great laptops
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Our (Usual) Assumption

= We have training examples {x;, y1}... {xn, ¥n}
= We have an unknown test example x without y
= What do we predict h(x)?
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A simple solution

= Find something similar
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A simple solution

= Find something similar

Discrete Continuous

X1 N x| N
d(X1»X2)=1—m (1) d(xi, %) =(—%)? (2
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A simple solution

= Find something similar

Discrete Continuous

X1 0 Xz NN
d(X1}X2) =1-— m (1) d(X1 ,X2) = (X1 —X2)2 (2)

= We can do better .. .look for the k closest and return the average y
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1-nearest neighbor outcome is a plus
2-nearest neighbors outcome is unknown

- 5-nearest neighbors outcome is a minus

+ +
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First Homework

= Implement k-nearest neighbors
= Acclimate you to the Python programming environment

= |ntroduce you to assignment submission
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Next time ...

= Probabilities
= Learning from data

o Naive Bayes
o Logistic Regression
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