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Why is it a good idea?

If you need a model to do x, easier to train that model than to train
a massive model to do everything and x

Users find it more interpretable

Disagreements between models can help with calibration
Cheaper to serve (smaller models can live on modest, smaller
servers)
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Going to the Token Level
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Routing

The router variable W, produces logits i(x)= W, - x which are
normalized via a softmax distribution:
e h(x); 1
pi(x)= W (1)
J
The top-k gate values are selected for routing the token x to linearly
weight each expert’s contribution

y =Zpi(X)Ei(x)- 2)
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e Shazeer et al. (2018) and Leipkhin et al. (2020): auxiliary loss
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Ioss=a-N-Zfi-Pi (3)
i=1
where f; is the fraction of tokens dispatched to expert i,
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and P; is the fraction of the router probability allocated for expert i,

1
P = T Z pi(x). (5)

XERB
Since we seek uniform routing of the batch of tokens across the N

experts, we desire both vectors to have values of 1/N.
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Why can this help?

e Easier fine tuning (more on this later)
e Increase in overall scale

e Easier to distribute to more machines (Experts on different devices)



Wrapup

Most major models are likely using mixture of experts

It helps keep training scalable

And allows to claim larger models

It also leads to better results

Helps address sparsity issue: most of models aren’t useful for any
particular example






