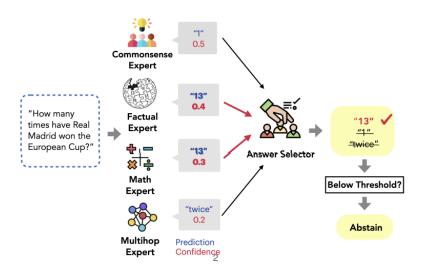
LLM Optimization

Jordan Boyd-Graber

University of Maryland

Mixture of Experts


Slides adapted from William Fedus and Barret Zoph

Motivation

- The trend is to bigger models
- But what if you can do as well with N different models?

Motivation

- The trend is to bigger models
- But what if you can do as well with N different models?
- Problem is, how to know which model to use?

Motivation

- The trend is to bigger models
- But what if you can do as well with N different models?
- Problem is, how to know which model to use?

Getting MoRE out of Mixture of Language Model Reasoning Experts

Chenglei Si^{1,4} Weijia Shi² Chen Zhao³
Luke Zettlemoyer² Jordan Boyd-Graber¹

¹ University of Maryland

³ NYU Shanghai

Clsi@stanford.edu

Chen Zhao³

Jordan Boyd-Graber¹

² University of Washington

⁴ Stanford University

Why is it a good idea?

- If you need a model to do x, easier to train that model than to train a massive model to do everything and x
- Users find it more interpretable
- Disagreements between models can help with calibration
- Cheaper to serve (smaller models can live on modest, smaller servers)

Why is it a good idea?

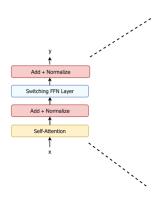
- If you need a model to do x, easier to train that model than to train a massive model to do everything and x
- Users find it more interpretable
- Disagreements between models can help with calibration
- Cheaper to serve (smaller models can live on modest, smaller servers)

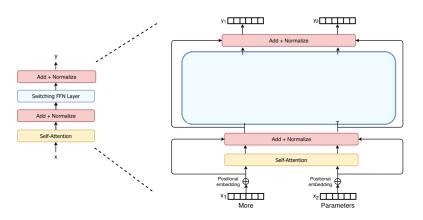
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity

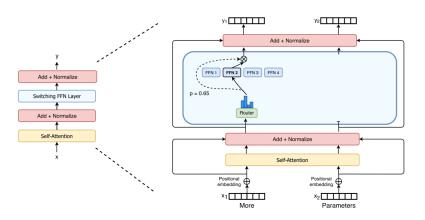
William Fedus*

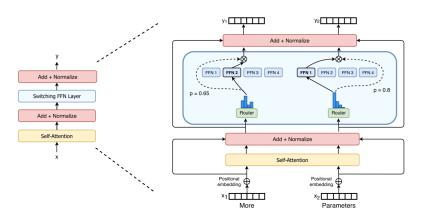
LIAMFEDUS@GOOGLE.COM

Barret Zoph*


BARRETZOPH@GOOGLE.COM


Noam Shazeer


NOAM@GOOGLE.COM


Google, Mountain View, CA 94043, USA

Editor: Alexander Clark

Routing

The router variable W_r produces logits $h(x) = W_r \cdot x$ which are normalized via a softmax distribution:

$$p_i(x) = \frac{e^{h(x)_i}}{\sum_{j=0}^{N} e^{h(x)_j}}.$$
 (1)

The top-k gate values are selected for routing the token x to linearly weight each expert's contribution

$$y = \sum_{i \in \mathcal{T}} p_i(x) E_i(x). \tag{2}$$

• Just use same objective?

- Just use same objective?
- Shazeer et al. (2018) and Leipkhin et al. (2020): auxiliary loss
- Given N experts indexed by i = 1 to N and a batch B with T tokens

$$loss = \alpha \cdot N \cdot \sum_{i=1}^{N} f_i \cdot P_i$$
 (3)

where f_i is the fraction of tokens dispatched to expert i,

- Just use same objective?
- Shazeer et al. (2018) and Leipkhin et al. (2020): auxiliary loss
- Given N experts indexed by i = 1 to N and a batch B with T tokens

$$loss = \alpha \cdot N \cdot \sum_{i=1}^{N} f_i \cdot P_i$$
 (3)

where f_i is the fraction of tokens dispatched to expert i,

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{R}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$
 (4)

and P_i is the fraction of the router probability allocated for expert i,

- Just use same objective?
- Shazeer et al. (2018) and Leipkhin et al. (2020): auxiliary loss
- Given N experts indexed by i = 1 to N and a batch B with T tokens

$$loss = \alpha \cdot N \cdot \sum_{i=1}^{N} f_i \cdot P_i$$
 (3)

where f_i is the fraction of tokens dispatched to expert i,

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{R}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$
 (4)

and P_i is the fraction of the router probability allocated for expert i,

$$P_i = \frac{1}{T} \sum_{x \in \mathcal{D}} p_i(x). \tag{5}$$

Since we seek uniform routing of the batch of tokens across the N experts, we desire both vectors to have values of 1/N.

Why can this help?

- Easier fine tuning (more on this later)
- Increase in overall scale
- Easier to distribute to more machines (Experts on different devices)

Wrapup

- Most major models are likely using mixture of experts
- It helps keep training scalable
- And allows to claim larger models
- It also leads to better results
- Helps address sparsity issue: most of models aren't useful for any particular example

