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Language models

Language models answer the question: How likely is a string of
English words good English?

Autocomplete on phones and websearch

Creating English-looking documents
e Very common in machine translation systems
» Help with reordering / style

Pim(the house is small) > pyy (small the is house)
» Help with word choice

Pim(l @am going home) > py,(1 am going house)



Fill in the blank

| have a sad story to tell you

It may hurt your feelings a bit
Last night when | walked into my
bathroom

| stepped in a big pile of ...
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Language Modeling: The Good Old Days

n-gram models

e Have a big corpus

e Count n-gram sequences

e Estimate
p(w,|wy_y...w,_i)=

Count(wy,_f ... Wy Wwy)

(1

Count(wy,—g ... Wy_1)



Language Modeling: The Good Old Days

Log-linear models

n-gram models e Define a feature vector f

based on word w and
context ¢

e Have a big corpus

e Count n-gram sequences .
. e (Can include n-gram features)
e Estimate

P(Wp | Wy o Wy i) = e Learn 8 from data
n n—1---Wn—kJ)—

e Then p(w|c)=
Count(wy,_f ... Wy Wwy)

Count(wy,—g ... Wy_1) ) exp{ﬁf(w,c)}
S, ep{pfve)




Reccurent Neural Networks

Use Word2Vec or learn representations from scratch
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The cat sat




Reccurent Neural Networks

Each hidden state has D =500 or so




Reccurent Neural Networks

Transform hidden state to V' (vocab) matrix W(s)fz,




Reccurent Neural Networks

Take softmax to get real distribution

‘ “ ‘t+1 ‘

The cat sat




RNN parameters

hy=f(W"h,_ + W)
Vi =softmax(W h,)

P(xpp1=vjlx¢,... %1) =V,

e Learn parameter h to initialize hidden layer
e X, is representation of input (e.g., word embedding)
e j is probability distribution over vocabulary
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Training Woes

Multiplying same matrix over and over
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Multiplying same matrix over and over



Training Woes
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Training Woes
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Multiplying same matrix over and over



Vanishing / Exploding Gradient

e Work out the math:

> Define By, / B, as upper bound of norms of W, h
> Bengio et al 1994: Partial derivative is (B B,) ™~
» This can be very small or very big

e If it's big, SGD jumps too far

e [fit's small, we don’t learn what we need: “Jane walked into the
room with John, who wasn’t paying attention to what was going on.
After poking him to get his attention, John said hi to i



Gradient Clipping

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode
5 OF
8 95
if ||g|| > threshold then
& o threshold &
B Tl &
end if
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From Pascanu et al. 2013
e |f they get too big, stop at boundary

e Prevents (dashed) values from jumping around (solid)



Fixing Vanishing Gradients

. RelU

R(z) =max(0, z)

=10 =5 0

e RelU activation
e Initialize W to identity matrix



Vizualization from Karpathy et al

Cell sensitive to position in line:

crossin of the Berezina lies in the fact

p the fallacy of all the plans for

ndness of the only possible

he ueneral mass of the army
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and all its energy was directed
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Vizualization from Karpathy et al

Cell that turns on inside quotes:

11



Vizualization from Karpathy et al

Cell that robustly activates inside if statements:




RNN Recap

e Simple model
e Complicated training (but good toolkits available)

e Do we need to remember everything?






