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Fred Jelinek showing off his ASR work at IBM (he later worked on MT)



Roadmap

• Introduction to MT

• Components of MT system

• Word-based models

• Beyond word-based models
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Books by Philip Koehn
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What unlocks translations?

15.10.13 rosetta-stone.jpeg (1011×1296)

liology.files.wordpress.com/2010/01/rosetta-stone.jpeg 1/1

• Parallel data: Two languages,
same meaning

• Rosetta stone: allowed us
understand to Egyptian

• Where do we get them?
▶ Some governments require

translations (Canada, EU,
Hong Kong)
▶ Newspapers
▶ Internet
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Pieces of Machine Translation System



Terminology

• Source language: f (foreign)

• Target language: e (english)
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Collect Statistics

Look at a parallel corpus (German text along with English translation)
Translation of Haus Count
house 8,000
building 1,600
home 200
household 150
shell 50
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Estimate Translation Probabilities

Maximum likelihood estimation

pf (e) =



























0.8 if e = house,

0.16 if e = building,

0.02 if e = home,

0.015 if e = household,

0.005 if e = shell.
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das Haus ist klein

the house is small

1 2 3 4

1 2 3 4

Best case



das Hausistklein

the house is small
1 2 3 4

1 2 3 4

Words may be reordered during translation



das Haus ist klitzeklein

the house is very small
1 2 3 4

1 2 3 4
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A source word may translate into multiple target words



das Haus ist klein

house is small
1 2 3

1 2 3 4

Words may be dropped when translated (das)



das Haus ist klein

the house is just small

NULL

1 2 3 4

1 2 3 4
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0

Words may be added during translation (just)



A family of lexical translation models

• A family translation models

• Uncreatively named: Model 1, Model 2, . . .

• Foundation of all modern translation algorithms

• First up: Model 1
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IBM Model 1

• Generative model: break up translation process into smaller steps
▶ IBM Model 1 only uses lexical translation

• Translation probability
▶ for a foreign sentence f =(f1, ..., flf ) of length lf
▶ to an English sentence e =(e1, ...,ele) of length le
▶ with an alignment of each English word ej to a foreign word fi

according to the alignment function a : j→ i

p(e,a|f)=
ε

(lf +1)le

le
∏

j=1

t(ej |f a(j))

▶ parameter ε is a normalization constant
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Example

das Haus ist klein
e t(e|f)
the 0.7
that 0.15
which 0.075
who 0.05
this 0.025

e t(e|f)
house 0.8
building 0.16
home 0.02
family 0.015
shell 0.005

e t(e|f)
is 0.8
’s 0.16
exists 0.02
has 0.015
are 0.005

e t(e|f)
small 0.4
little 0.4
short 0.1
minor 0.06
petty 0.04

p(e,a | f ) =
ε

54
× t(the |das)× t(house |Haus)× t(is | ist)× t(small |klein)

=
ε

54
×0.7×0.8×0.8×0.4

= 0.00029ε
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Learning Lexical Translation Models

• We would like to estimate the lexical translation probabilities t(e|f )
from a parallel corpus

• ... but we do not have the alignments

• Chicken and egg problem
▶ if we had the alignments,
→ we could estimate the parameters of our generative model
▶ if we had the parameters,
→ we could estimate the alignments
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EM Algorithm

• Incomplete data
▶ if we had complete data, would could estimate model
▶ if we had model, we could fill in the gaps in the data

• Expectation Maximization (EM) in a nutshell
1. initialize model parameters (e.g. uniform)
2. assign probabilities to the missing data
3. estimate model parameters from completed data
4. iterate steps 2–3 until convergence
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EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• Initial step: all alignments equally likely

• Model learns that, e.g., la is often aligned with the
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EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• After one iteration

• Alignments, e.g., between la and the are more likely
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EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• After another iteration

• It becomes apparent that alignments, e.g., between fleur and
flower are more likely (pigeon hole principle)
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EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• Convergence

• Inherent hidden structure revealed by EM
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EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

p(la|the) = 0.453
p(le|the) = 0.334

p(maison|house) = 0.876
p(bleu|blue) = 0.563

...

• Parameter estimation from the aligned corpus
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Convergence

das Haus

the house

das Buch

the book

ein Buch

a book
e f initial 1st it. 2nd it. . . . final

the das 0.25 0.5 0.6364 . . . 1
book das 0.25 0.25 0.1818 . . . 0
house das 0.25 0.25 0.1818 . . . 0

the buch 0.25 0.25 0.1818 . . . 0
book buch 0.25 0.5 0.6364 . . . 1

a buch 0.25 0.25 0.1818 . . . 0
book ein 0.25 0.5 0.4286 . . . 0

a ein 0.25 0.5 0.5714 . . . 1
the haus 0.25 0.5 0.4286 . . . 0

house haus 0.25 0.5 0.5714 . . . 1
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Ensuring Fluent Output

• Our translation model cannot decide between small and little

• Sometime one is preferred over the other:
▶ small step: 2,070,000 occurrences in the Google index
▶ little step: 257,000 occurrences in the Google index

• Language model
▶ estimate how likely a string is English
▶ based on n-gram statistics

p(e) = p(e1,e2, . . . ,en)

= p(e1)p(e2|e1) . . .p(en|e1,e2, . . . ,en−1)

≃ p(e1)p(e2|e1) . . .p(en|en−2,en−1)
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What order?



Noisy Channel Model

• Bayes rule

p(a |b) =
p(b |a)p(a)

p(b)
(1)

(2)

28



Noisy Channel Model

• Bayes rule

p(a |b) =
p(b |a)p(a)

p(b)
(1)

• Turning English into Foreign

=argmax
e

p(e) (2)
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Noisy Channel Model

• Applying Bayes rule also called noisy channel model
▶ we observe a distorted message R (here: a foreign string f)
▶ we have a model on how the message is distorted

(here: translation model)
▶ we have a model on what messages are probably

(here: language model)
▶ we want to recover the original message S

(here: an English string e)
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Higher IBM Models

IBM Model 1 lexical translation
IBM Model 2 adds absolute reordering model
IBM Model 3 adds fertility model
IBM Model 4 relative reordering model
IBM Model 5 fixes deficiency

• Only IBM Model 1 has global maximum
▶ training of a higher IBM model builds on previous model

• Compuationally biggest change in Model 3
▶ trick to simplify estimation does not work anymore
→ exhaustive count collection becomes computationally too expensive
▶ sampling over high probability alignments is used instead
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Legacy

• IBM Models were the pioneering models in statistical machine
translation

• Introduced important concepts
▶ generative model
▶ EM training
▶ reordering models

31



Attention vs. Alignment
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