Machine Translation

Jordan Boyd-Graber

University of Maryland

Word-Based Models

Adapted from material by Philipp Koehn

Fred Jelinek showing off his ASR work at IBM (he later worked on MT)

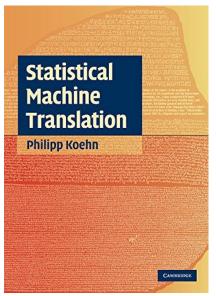
Roadmap

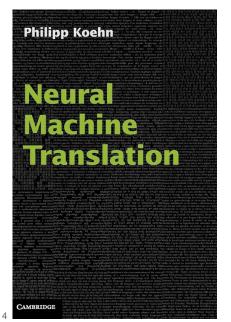
- Introduction to MT
- Components of MT system
- Word-based models
- Beyond word-based models

Roadmap

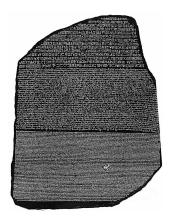
- Introduction to MT
- Components of MT system
- Word-based models
- Beyond word-based models: phrase-based and neural

Books by Philip Koehn





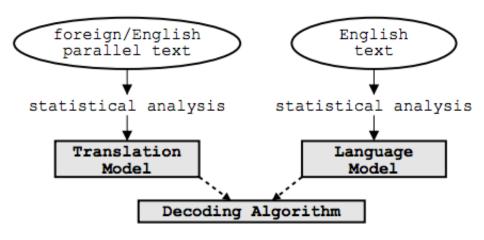
What unlocks translations?



- Parallel data: Two languages, same meaning
- Rosetta stone: allowed us understand to Egyptian

What unlocks translations?

- Parallel data: Two languages, same meaning
- Rosetta stone: allowed us understand to Egyptian
- Where do we get them?
 - Some governments require translations (Canada, EU, Hong Kong)
 - Newspapers
 - Internet



Pieces of Machine Translation System

Terminology

- Source language: f (foreign)
- Target language: **e** (english)

Collect Statistics

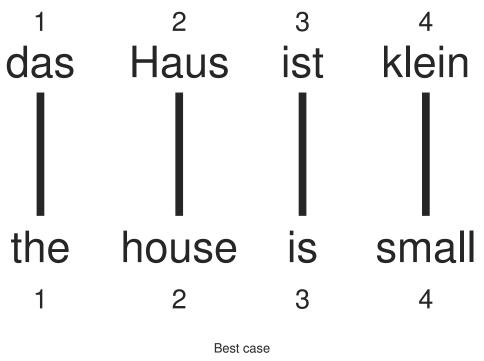
Look at a parallel corpus (German text along with English translation)

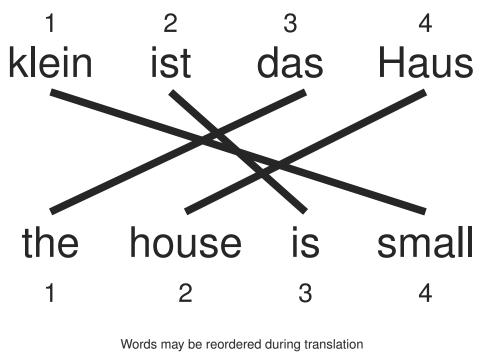
Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

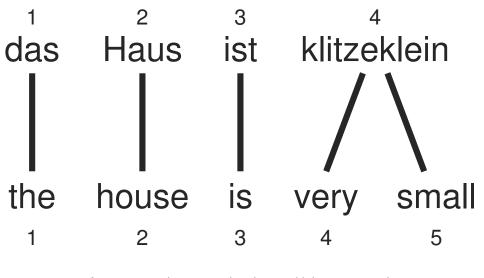
Estimate Translation Probabilities

Maximum likelihood estimation

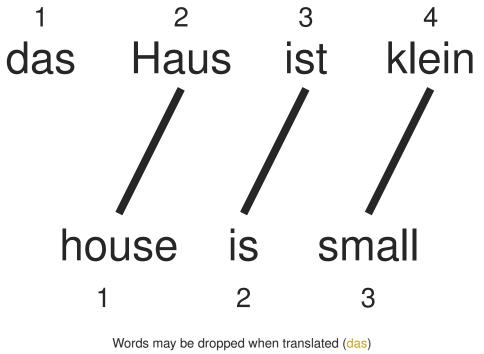
$$p_f(e) = \begin{cases} 0.8 & \text{if } e = \text{house,} \\ 0.16 & \text{if } e = \text{building,} \\ 0.02 & \text{if } e = \text{home,} \\ 0.015 & \text{if } e = \text{household,} \\ 0.005 & \text{if } e = \text{shell.} \end{cases}$$

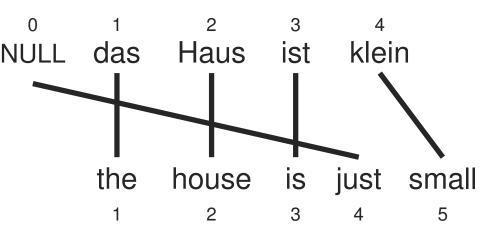






A source word may translate into multiple target words





Words may be added during translation (just)

A family of lexical translation models

- A family translation models
- Uncreatively named: Model 1, Model 2, ...
- Foundation of all modern translation algorithms
- First up: Model 1

- Generative model: break up translation process into smaller steps
 - ► IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_t})$ of length I_f
 - **b** to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_o}} \prod_{j=1}^{I_o} t(e_j | f_{a(j)})$$

- Generative model: break up translation process into smaller steps
 - ► IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_t})$ of length I_f
 - ▶ to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_e}} \prod_{j=1}^{I_e} t(e_j | f_{a(j)})$$

- Generative model: break up translation process into smaller steps
 - ► IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_t})$ of length l_f
 - **b** to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, \mathbf{a}|\mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_e}} \prod_{j=1}^{I_e} t(\frac{\mathbf{e}_j}{I_a(j)})$$

- Generative model: break up translation process into smaller steps
 - ► IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_t})$ of length I_f
 - **b** to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, \mathbf{a}|\mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_e}} \prod_{j=1}^{I_e} t(e_j | f_{\mathbf{a}(j)})$$

- Generative model: break up translation process into smaller steps
 - ► IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_t})$ of length I_f
 - ▶ to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_e}} \prod_{j=1}^{I_e} t(e_j|\mathbf{f}_{a(j)})$$

- Generative model: break up translation process into smaller steps
 - ► IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_t})$ of length I_f
 - ▶ to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_e}} \prod_{j=1}^{I_e} t(e_j | f_{a(j)})$$

- Generative model: break up translation process into smaller steps
 - ► IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_t})$ of length l_f
 - **b** to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_e}} \prod_{j=1}^{I_e} t(e_j | f_{a(j)})$$

- Generative model: break up translation process into smaller steps
 - ► IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_t})$ of length I_f
 - **b** to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

 \triangleright parameter ϵ is a normalization constant

Example

das

е	t(e f)
the	0.7
that	0.15
which	0.075
who	0.05
this	0.025

Haus

е	t(e f)				
house	0.8				
building	0.16				
home	0.02				
family	0.015				
shell	0.005				

ist

е	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

klein

e	t(e f)			
small	0.4			
little	0.4			
short	0.1			
minor	0.06			
petty	0.04			

$$p(e, a | f) = \frac{\epsilon}{5^4} \times t(\text{the} | \text{das}) \times t(\text{house} | \text{Haus}) \times t(\text{is} | \text{ist}) \times t(\text{small} | \text{klein})$$

$$= \frac{\epsilon}{5^4} \times 0.7 \times 0.8 \times 0.8 \times 0.4$$

$$= 0.00029 \epsilon$$

Learning Lexical Translation Models

- We would like to estimate the lexical translation probabilities t(e|f) from a parallel corpus
- ... but we do not have the alignments
- · Chicken and egg problem
 - if we had the alignments,
 - → we could estimate the parameters of our generative model
 - if we had the parameters,
 - → we could estimate the alignments

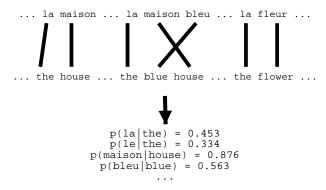
- Incomplete data
 - if we had complete data, would could estimate model
 - if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
 - 1. initialize model parameters (e.g. uniform)
 - 2. assign probabilities to the missing data
 - 3. estimate model parameters from completed data
 - 4. iterate steps 2-3 until convergence

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

- After one iteration
- Alignments, e.g., between la and the are more likely

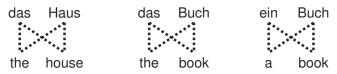
- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

- Convergence
- Inherent hidden structure revealed by EM



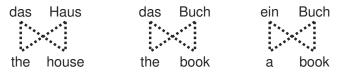
Parameter estimation from the aligned corpus

Convergence



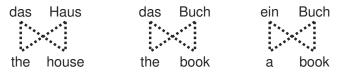
е	f	initial	1st it.	2nd it.	 final
the	das	0.25	0.5	0.6364	 1
book	das	0.25	0.25	0.1818	 0
house	das	0.25	0.25	0.1818	 0
the	buch	0.25	0.25	0.1818	 0
book	buch	0.25	0.5	0.6364	 1
а	buch	0.25	0.25	0.1818	 0
book	ein	0.25	0.5	0.4286	 0
а	ein	0.25	0.5	0.5714	 1
the	haus	0.25	0.5	0.4286	 0
house	haus	0.25	0.5	0.5714	 1

Convergence



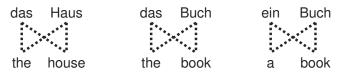
е	f	initial	1st it.	2nd it.	 final
the	das	0.25	0.5	0.6364	 1
book	das	0.25	0.25	0.1818	 0
house	das	0.25	0.25	0.1818	 0
the	buch	0.25	0.25	0.1818	 0
book	buch	0.25	0.5	0.6364	 1
a	buch	0.25	0.25	0.1818	 0
book	ein	0.25	0.5	0.4286	 0
a	ein	0.25	0.5	0.5714	 1
the	haus	0.25	0.5	0.4286	 0
house	haus	0.25	0.5	0.5714	 1

Convergence



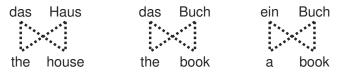
е	f	initial	1st it.	2nd it.	 final
the	das	0.25	0.5	0.6364	 1
book	das	0.25	0.25	0.1818	 0
house	das	0.25	0.25	0.1818	 0
the	buch	0.25	0.25	0.1818	 0
book	buch	0.25	0.5	0.6364	 1
а	buch	0.25	0.25	0.1818	 0
book	ein	0.25	0.5	0.4286	 0
а	ein	0.25	0.5	0.5714	 1
the	haus	0.25	0.5	0.4286	 0
house	haus	0.25	0.5	0.5714	 1

Convergence



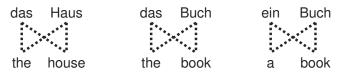
е	f	initial	1st it.	2nd it.	 final
the	das	0.25	0.5	0.6364	 1
book	das	0.25	0.25	0.1818	 0
house	das	0.25	0.25	0.1818	 0
the	buch	0.25	0.25	0.1818	 0
book	buch	0.25	0.5	0.6364	 1
а	buch	0.25	0.25	0.1818	 0
book	ein	0.25	0.5	0.4286	 0
а	ein	0.25	0.5	0.5714	 1
the	haus	0.25	0.5	0.4286	 0
house	haus	0.25	0.5	0.5714	 1

Convergence



е	f	initial	1st it.	2nd it.	 final
the	das	0.25	0.5	0.6364	 1
book	das	0.25	0.25	0.1818	 0
house	das	0.25	0.25	0.1818	 0
the	buch	0.25	0.25	0.1818	 0
book	buch	0.25	0.5	0.6364	 1
а	buch	0.25	0.25	0.1818	 0
book	ein	0.25	0.5	0.4286	 0
а	ein	0.25	0.5	0.5714	 1
the	haus	0.25	0.5	0.4286	 0
house	haus	0.25	0.5	0.5714	 1

Convergence



е	f	initial	1st it.	2nd it.	 final
the	das	0.25	0.5	0.6364	 1
book	das	0.25	0.25	0.1818	 0
house	das	0.25	0.25	0.1818	 0
the	buch	0.25	0.25	0.1818	 0
book	buch	0.25	0.5	0.6364	 1
а	buch	0.25	0.25	0.1818	 0
book	ein	0.25	0.5	0.4286	 0
а	ein	0.25	0.5	0.5714	 1
the	haus	0.25	0.5	0.4286	 0
house	haus	0.25	0.5	0.5714	 1

Ensuring Fluent Output

- Our translation model cannot decide between small and little
- Sometime one is preferred over the other:
 - small step: 2,070,000 occurrences in the Google index
 - little step: 257,000 occurrences in the Google index
- Language model
 - estimate how likely a string is English
 - based on n-gram statistics

$$p(\mathbf{e}) = p(e_1, e_2, ..., e_n)$$

$$= p(e_1)p(e_2|e_1)...p(e_n|e_1, e_2, ..., e_{n-1})$$

$$\simeq p(e_1)p(e_2|e_1)...p(e_n|e_{n-2}, e_{n-1})$$

Write this in English

yes mouse The cat water drink cows

• Bayes rule

$$p(a|b) = \frac{p(b|a)p(a)}{p(b)}$$
 (1)

(2)

• Bayes rule

$$p(a|b) = \frac{p(b|a)p(a)}{p(b)} \tag{1}$$

• Turning English into Foreign

$$=\arg\max_{\mathbf{e}}p(\mathbf{e})\tag{2}$$

• Bayes rule

$$p(a|b) = \frac{p(b|a)p(a)}{p(b)} \tag{1}$$

• Turning English into Foreign

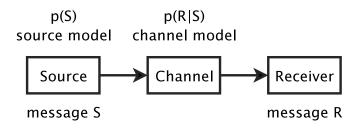
$$= \arg\max_{\mathbf{e}} p(\mathbf{f}|\mathbf{e})p(\mathbf{e}) \tag{2}$$

Bayes rule

$$p(a|b) = \frac{p(b|a)p(a)}{p(b)} \tag{1}$$

• Turning English into Foreign

$$= \arg\max_{\mathbf{e}} \frac{p(\mathbf{f}|\mathbf{e})p(\mathbf{e})}{p(\mathbf{f})}$$
 (2)



- Applying Bayes rule also called noisy channel model
 - we observe a distorted message R (here: a foreign string f)
 - we have a model on how the message is distorted (here: translation model)
 - we have a model on what messages are probably (here: language model)
 - we want to recover the original message S (here: an English string e)

Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
 - training of a higher IBM model builds on previous model
- Compuationally biggest change in Model 3
 - trick to simplify estimation does not work anymore
 - → exhaustive count collection becomes computationally too expensive
 - sampling over high probability alignments is used instead

Legacy

- IBM Models were the pioneering models in statistical machine translation
- Introduced important concepts
 - generative model
 - EM training
 - reordering models

Attention vs. Alignment

What does Attention in Neural Machine Translation Pay Attention to?

Hamidreza Ghader and Christof Monz
Informatics Institute, University of Amsterdam, The Netherlands
h.ghader, c.monz@uva.nl

