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Recap: Gradient Descent vs. Batch Optimization

• Batch optimization
queries all data points
to find the best
direction.

• Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

• Both aim to minimize
loss by moving against
the gradient.

β⃗ = β⃗ ′−η∇⃗βL (β⃗ ′)
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SGD’s Isotropy Problem

• SGD treats all dimensions equally
(isotropic updates).

• Causes slow progress along
shallow gradient directions.

• Inputs with varying scales worsen
this problem.

• Adaptive learning rates help by
scaling updates per dimension.
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Understanding Saddle Points

• Saddle points have zero gradient
but are not minima or maxima.

• Example: f (x , y ) = x 2− y 2 at the
origin.

• Gradient descent can get stuck or
slow down near saddle points.

• They dominate critical points in
high-dimensional networks.
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On the Importance of Initialization and Momentum

• Momentum: If you’re going in a direction, keep going in that
direction

• Mathematically: accumulate past gradients to create vector of past
directions

• Helps maintain direction through flat regions and saddle points
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Momentum: Improving Gradient Descent Direction

• Momentum averages successive
gradients for smoother updates.

• Cancels conflicting directions,
accelerates aligned ones.

• Adds a velocity term to keep
optimization moving forward.

vt =τvt−1+∇βL (βt ) (4)

β =β ′−τvt (5)
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Gradient Scale and Adaptive Learning Rates

• Gradient magnitude varies greatly during training.

• Large gradients cause unstable updates; small gradients slow
learning.

• Normalize gradient magnitude per dimension to stabilize steps.

• Leads to adaptive learning rates per parameter.
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AdaGrad and RMSProp: Adaptive Optimizers

• AdaGrad:

g⃗ t ≡
1

N

∑

i∈minibatch t
∇βL
�

x (i ), y (i ), β⃗t

�

(6)

Gt =
∑

j g⃗ j g ⊤j (7)

βt+1 =βt −
η
p

εI +diag(Gt )
g⃗ t (8)

• RMSProp:

E
�

g 2
t

�

=γE
�

g 2
t−1

�

+ (1−γ)
�

∂L
∂ β

�2

(9)

βt+1 =βt −
η
q

E
�

g 2
t

�

+ε

∂L
∂ β

(10)
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Adam: Combining Momentum and RMSProp

• Adam merges momentum (first
moment) and RMSProp (second
moment).

• Maintains running averages of
gradients and their squares.

• Corrects bias from zero
initialization.

• Adapts learning rates dynamically
per parameter.

vt =γ1vt−1+ (1−γ1)∇βL (βt )

E
�

g 2
t

�

=γ2E
�

g 2
t−1

�

+ (1−γ2)
�

∂L
∂ β

�2
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Adam Algorithm Overview

• Bias-corrected estimates:

v̂t =
mt

1−γt
1

, ØE
�

g 2
t

�

=
vt

1−γt
2

(11)

• Parameter update:

β⃗t+1 = β⃗t −
η
r

ØE
�

g 2
t

�

+ε
v̂t (12)

• Combines momentum and adaptive learning, widely used.
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AdamW: Weight Decay Corrected Adam

• AdamW separates weight decay
from L2 regularization.

• Traditional Adam mixes decay with
gradient updates.

• Weight decay applied directly to
weights improves generalization.

β⃗t+1 = β⃗t −η





1
r

ØE
�

g 2
t

�

+ε
v̂t +λβ⃗t





(13)
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Summary and Takeaways

• SGD is foundational but has limitations: isotropy, noise, and saddle
points.

• Momentum accelerates optimization and helps overcome plateaus.

• Adaptive methods like RMSProp scale learning rates per
parameter.

• Adam combines momentum and adaptive scaling.

• AdamW improves on Adam by properly handling weight decay.
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