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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. .

Batch Gradient Descent
epoch number: = 0

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples. X =

e Both aim to minimize . A
loss by moving against e
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. R

Batch Gradient Descent
epoch number: = 27

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples. 2 =

e Both aim to minimize |\ -
loss by moving against e
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. .

Batch Gradient Descent
epoch number: = 40

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples. 2 =

e Both aim to minimize "1\ =
loss by moving against R
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. iy

Batch Gradient Descent
epoch number: = 53

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. i,

Batch Gradient Descent
epoch number: = 67

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. .

Batch Gradient Descent
epoch number: = 80

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. o

Batch Gradient Descent
epoch number: = 93

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. e

Batch Gradient Descent
epoch number: = 107

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. e

Batch Gradient Descent
epoch number: = 120

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. o

Batch Gradient Descent
epoch number: = 133

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. e

Batch Gradient Descent
epoch number: = 147

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. e

Batch Gradient Descent
epoch number: = 160

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. e

Batch Gradient Descent
epoch number: = 173

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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Recap: Gradient Descent vs. Batch Optimization

e Batch optimization
queries all data points
to find the best
direction. o

Batch Gradient Descent
epoch number: = 187

e Stochastic Gradient
Descent (SGD) queries
only a few random
samples.

e Both aim to minimize
loss by moving against
the gradient.
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SGD’s Isotropy Problem

e SGD treats all dimensions equally
(isotropic updates).

e Causes slow progress along
shallow gradient directions.

e |nputs with varying scales worsen
this problem.

e Adaptive learning rates help by
scaling updates per dimension.

SGD
Momentum F
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Understanding Saddle Points

e Saddle points have zero gradient
but are not minima or maxima.

e Example: f(x,y)=x?>—y? atthe
origin.

e Gradient descent can get stuck or
slow down near saddle points.

e They dominate critical points in
high-dimensional networks.
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Understanding Saddle Points

e Saddle points have zero gradient
but are not minima or maxima.

e Example: f(x,y)=x?—y? atthe
origin.

of _

5(0,0) =0 (1)
Too=0 o
dy

e Gradient descent can get stuck or
slow down near saddle points.

e They dominate critical points in
high-dimensional networks.



On the Importance of Initialization and Momentum

On the importance of initialization and momentum in deep learning

ILYASCSEGOOGLE. O™
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James Martoens
George Dahl
Geottrey Hinton

e Momentum: If you're going in a direction, keep going in that
direction

e Mathematically: accumulate past gradients to create vector of past
directions

e Helps maintain direction through flat regions and saddle points
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Momentum: Improving Gradient Descent Direction

e Momentum averages successive
gradients for smoother updates.

e Cancels conflicting directions, ‘Why Momentum Really Works
accelerates aligned ones.
e Adds a velocity term to keep N =
GL f/

optimization moving forward. SNV

v =101+ VgL (By) (4)
B=p—7uv (5)
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Momentum: Improving Gradient Descent Direction

e Momentum averages successive
gradients for smoother updates.

e Cancels conflicting directions, ‘Why Momentum Really Works
accelerates aligned ones.

e Adds a velocity term to keep RS _
optimization moving forward. e

v =101+ VgL (By) (4)
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Gradient Scale and Adaptive Learning Rates

Gradient magnitude varies greatly during training.

Large gradients cause unstable updates; small gradients slow
learning.

Normalize gradient magnitude per dimension to stabilize steps.

Leads to adaptive learning rates per parameter.



AdaGrad and RMSProp: Adaptive Optimizers

e AdaGrad:
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Adam: Combining Momentum and RMSProp

e Adam merges momentum (first
moment) and RMSProp (second
moment).

e Maintains running averages of
gradients and their squares.

Algorithm 1z o roposed igorhm T ochasic opimizaton. Se¢ Section 2 Tor Gl
and il more clhcien (ut o cean) orde

e Good default settings for ‘he ested ma

= 10-*. All operations on vectors are clement-wise. With 3¢ ndi
power .

e Corrects bias from zero
initialization.

xponential decay rates for the moment estimates
objective function with parameters 0
ector

e Adapts learning rates dynamically
per parameter.

€)

ond raw moment estimate)
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end while

return 6, (Resulting
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Adam: Combining Momentum and RMSProp

e Adam merges momentum (first
moment) and RMSProp (second
moment).

e Maintains running averages of
gradients and their squares.
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Adam: Combining Momentum and RMSProp

e Adam merges momentum (first
moment) and RMSProp (second
moment).

e Maintains running averages of
gradients and their squares.
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Adam Algorithm Overview

e Bias-corrected estimates:

Ul’:

e Parameter update:

ﬁt+1:ﬁt_%ﬁt (12)
E[g?]+e

e Combines momentum and adaptive learning, widely used.
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think it's clearly time for this to be made part of the published literature, so I recommend acceptance. (And all reviewers are in agreement that the
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The paper proposes, in the context of Adam, to apply literal weight decay in place of L2 regularization. An impressively thorough set of experiments
are given to demonstrate the improved generalization performance, as well as a decoupling of the hyperparameters.

Previous versions of the paper suffered from a lack of theoretical justification for the proposed method. Ordinarily, in such cases, one would worry that
the improved results could be due to some sort of experimental confound. But AdamW has been validated by so many other groups on a range of
domains that the improvement is well established. And other researchers have offered possible explanations for the improvement.

Recommendation: Accept (Poster)

Confidence: 5:The area chair is absolutely certain



AdamW: Weight Decay Corrected Adam

o AdamW separates weight decay
from L, regularization.

e Traditional Adam mixes decay with
gradient updates.

e Weight decay applied directly to
weights improves generalization.

ﬁt+1 =Bt_77

1
VE[gZ]+e

0, + B,

(13)

Adam

fort=1to ... do

if mazimize :
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AdamW
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Summary and Takeaways

e SGD is foundational but has limitations: isotropy, noise, and saddle
points.

e Momentum accelerates optimization and helps overcome plateaus.

e Adaptive methods like RMSProp scale learning rates per
parameter.

e Adam combines momentum and adaptive scaling.

e AdamW improves on Adam by properly handling weight decay.



