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Word Representation

= Before, we saw how valuable hidden layers were for representation
(much more language today)

= How can we use it for words?
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Word Representation

Before, we saw how valuable hidden layers were for representation
(much more language today)

How can we use it for words?

How similar is “pasta” to “pizza”

Computers often use one-hot representations

Or fragile knowledge bases
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Word Representation

= Before, we saw how valuable hidden layers were for representation
(much more language today)

= How can we use it for words?

= How similar is “pasta” to “pizza”

= Computers often use one-hot representations

= Or fragile knowledge bases

= Distributional Hypothesis (Harris, 1954; Firth, 1957)
= Know the word by the company it keeps
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Obvious things

= Use images?
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Obvious things

= Use images?
o How our eyes do it!
o We lose information
o OCR is often preprocessing step

= Use strings?
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Obvious things

= Use images?

o How our eyes do it!

o We lose information

o OCR is often preprocessing step
= Use strings?

o Wasteful of memory

o Is dOg different from Dog?

o What about “ dog” and “dog”?
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What we’ve already done

= Typically, want to do preprocessing (case, whitespace)
= Can also remove plurals, verb forms, etc. (more later)
= Then, you can represent each word as an integer

Natural Language Processing: Jordan Boyd-Graber | UMD Distributional St



What we’ve already done

= Typically, want to do preprocessing (case, whitespace)
= Can also remove plurals, verb forms, etc. (more later)

= Then, you can represent each word as an integer

o Memory efficient
o Removes connections between words
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What about a dictionary?

= \WordNet:

electronic
dictionary

= Brown clusters:
automatically built
tree

artifact

= Lesk algorithm:
from dictionary

(use tf-idf cosine)

I revolver | | six-gun | | six-shooter |
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What about a dictionary?

Pizza

a dish of ltalian origin consisting of a flat, round = WordNet:

base of dough baked with a topping of tomato electronic

sauce and cheese, typically with added meat or dictionary

vegetables. = Brown clusters:
automatically built

Pasta tree

a dish originally from Italy consisting of dough » |Lesk algorithm:

made from durum wheat and water, extruded or from dictionary

stamped into various shapes and typically (use tf-idf cosine)

cooked in boiling water.
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What about a dictionary?

Pizza = WordNet:

a dish of Italian origin consisting of a flat, round electronic

base of dough baked with a topping of tomato dictionary

sauce and cheese, typically with added meat or = Brown clusters:

vegetables. automatically built
tree

Pasta = Lesk algorithm:

a dish originally from Italy consisting of dough from dictionary

made from durum wheat and water, extruded or (use tf-idf cosine)

stamped into various shapes and typically = Infinitely deep

cooked in boiling water. rabbit hole!

Natural Language Processing: Jordan Boyd-Graber | UMD Distributional Semantics | 5/9



Intuition (from Boroni)

Marco saw a furry little wampimuk hiding in the tree
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Intuition (from Boroni)

Marco saw a furry little wampimuk hiding in the tree
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Continuous Representation!

0.0 0.2 0.4 0.6 0.8
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Definitions

Distributional Word Representation

Encoding a word’s meaning from how it is used in a corpus

Distributed Representation

Encoding a word’s meaning in a compact, dense, low-dimensional
representation
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Usefulness

Input image

"

o (ftan |

_ Wisual model

e

space

beautiful dog

| old house .
Q‘u P eoncept pool

Vismal-Concepi

Embedding
method
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= Multimodal
= Multilingual

= Useful downstream feature
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