
Frameworks

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
EXAMPLE IMPLEMENTATION: DAN

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 1 / 1

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1681–1691,

Beijing, China, July 26-31, 2015. c�2015 Association for Computational Linguistics

Deep Unordered Composition Rivals Syntactic Methods
for Text Classification

Mohit Iyyer,1 Varun Manjunatha,1 Jordan Boyd-Graber,2 Hal Daumé III1

1University of Maryland, Department of Computer Science and UMIACS
2University of Colorado, Department of Computer Science

{miyyer,varunm,hal}@umiacs.umd.edu, Jordan.Boyd.Graber@colorado.edu

Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-
timent analysis and factoid question an-
swering tasks while taking only a fraction
of the training time. While our model is
syntactically-ignorant, we show significant
improvements over previous bag-of-words
models by deepening our network and ap-
plying a novel variant of dropout. More-
over, our model performs better than syn-
tactic models on datasets with high syn-
tactic variance. We show that our model
makes similar errors to syntactically-aware
models, indicating that for the tasks we con-
sider, nonlinearly transforming the input is
more important than tailoring a network to
incorporate word order and syntax.

1 Introduction

Vector space models for natural language process-
ing (NLP) represent words using low dimensional
vectors called embeddings. To apply vector space
models to sentences or documents, one must first
select an appropriate composition function, which
is a mathematical process for combining multiple
words into a single vector.

Composition functions fall into two classes: un-
ordered and syntactic. Unordered functions treat in-
put texts as bags of word embeddings, while syntac-
tic functions take word order and sentence structure
into account. Previously published experimental

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).

However, there is a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products
and nonlinearities at every node of a syntactic parse
tree, which limits it to smaller datasets that can be
reliably parsed.

We introduce a deep unordered model that ob-
tains near state-of-the-art accuracies on a variety of
sentence and document-level tasks with just min-
utes of training time on an average laptop computer.
This model, the deep averaging network (DAN),
works in three simple steps:

1. take the vector average of the embeddings
associated with an input sequence of tokens

2. pass that average through one or more feed-
forward layers

3. perform (linear) classification on the final
layer’s representation

The model can be improved by applying a novel
dropout-inspired regularizer: for each training in-
stance, randomly drop some of the tokens’ embed-
dings before computing the average.

We evaluate DANs on sentiment analysis and fac-
toid question answering tasks at both the sentence
and document level in Section 4. Our model’s suc-
cesses demonstrate that for these tasks, the choice
of composition function is not as important as ini-
tializing with pretrained embeddings and using a
deep network. Furthermore, DANs, unlike more
complex composition functions, can be effectively
trained on data that have high syntactic variance. A

1681

"Document Averaging Networks"

text classification

Implementing a non-trivial example . . .

Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN)

z1 =g (W1z0+ b1)

z2 =g (W2z1+ b2)

ŷ =softmax(z2)

� Works about as well as more complicated models

� Strong baseline

� Key idea: Continuous Bag of Words

CBOW(w1, . . . , wN) =
∑

i

E [wi] (1)

� Actual non-linearity doesn’t matter, we’ll use tanh

� Let’s implement in PyTorch

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 3 / 1

Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN)

z1 =g (z1)

z2 =g (z2)

ŷ =softmax(z3)

Initialization
def __init__(self, n_classes, vocab_size, emb_dim=300,

n_hidden_units=300):
super(DanModel, self).__init__()
self.n_classes = n_classes
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_hidden_units = n_hidden_units
self.embeddings = nn.Embedding(self.vocab_size,

self.emb_dim)
self.classifier = nn.Sequential(

nn.Linear(self.n_hidden_units,
self.n_hidden_units),

nn.ReLU(),
nn.Linear(self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax()

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 4 / 1

Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN)

z1 =g (z1)

z2 =g (z2)

ŷ =softmax(z3)

Forward
def forward(self, batch, probs=False):

text = batch[’text’][’tokens’]
length = batch[’length’]
text_embed = self._word_embeddings(text)
Take the mean embedding. Since padding results
in zeros its safe to sum and divide by length
encoded = text_embed.sum(1)
encoded /= lengths.view(text_embed.size(0), -1)

Compute the network score predictions
logits = self.classifier(encoded)
if probs:

return self._softmax(logits)
else:

return logits

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 5 / 1

Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN)

z1 =g (z1)

z2 =g (z2)

ŷ =softmax(z3)

Training
def _run_epoch(self, batch_iter, train=True):

self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 6 / 1

Summary

� Computation Graph

� Expressions (≈ nodes in the graph)

� Parameters, LookupParameters

� Model (a collection of parameters)

� Optimizers

� Create a graph for each example, compute loss, backdrop, update

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7 / 1

