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Neural Nets and Language

Language Neural-Nets

Continuous: poor native support for

structure
Big challenge: writing code that translates between the

{discrete-structured, continuous} regimes

Discrete, structured (graphs, trees)
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Why not do it yourself?

Hard to compare with exting models

Obscures difference between model and optimization
= Debugging has to be custom-built

Hard to tweak model
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Outline

= Computation graphs (general)
= Neural Nets in PyTorch

= Full example
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Computation Graphs

Expression

-
X

graph:
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Computation Graphs

Expression
bl
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= Edge: function argument / data dependency
= A node with an incoming edge is a function F = f(u) edge’s tail node

= A node computes its value and the value of its derivative w.r.t each
argument (edge) times a derivative g—i
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Computation Graphs
Expression

2TA

graph:

F(U, V) =UV

Functions can be nullary, unary, binary, ... n-ary. Often they are unary or
binary.
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Computation Graphs

Expression

XTAx

graph:

Computation graphs are (usually) directed and acyclic
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Computation Graphs

Expression

T Ax
graph:

f(x,A) =x"Ax

& @

Of (x,A)
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Computation Graphs
Expression

RTAx+b-X+c

graph: 1171-251-3 ZII.
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Computation Graphs
Expression

y=%TAx+b-Z+c

graph: f@1,32,23) Eiﬂz

Variable names label nodes
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Algorithms

= Graph construction
= Forward propagation
o Loop over nodes in topological order
o Compute the value of the node given its inputs
o Given my inputs, make a prediction (i.e. “error” vs. “target output”)
= Backward propagation
o Loop over the nodes in reverse topological order, starting with goal node
o Compute derivatives of final goal node value wrt each edge’s tail node
o How does the output change with small change to inputs?
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Forward Propagation
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Forward Propagation
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Forward Propagation
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Forward Propagation
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Constructing Graphs

Static declaration

= Define architecture, run data
through

= PROS: Optimization, hardware
support

= CONS: Structured data ugly,
graph language

Theano, Tensorflow

Dynamic declaration

= Graph implicit with data

= PROS: Native language,
interleave construction/evaluation

= CONS: Slower, computation can
be wasted

Chainer, Dynet, PyTorch
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Words Sentences

Word
embedding H__--_F'DTE‘

LSTM over roat 1 [ [1—
+ morphemes /

wiuoe JeG>0e0>0

characters

Alice gave a message to Bob

Phrases Documents

°
i g O 0 Ol« This film was completely unbelievable.
/ —@,

< The characters were wooden and the plot was absurd.

That being said, I liked it.

Language is Hierarchical



Dynamic Hierarchy in Language

= Language is hierarchical

o Graph should reflect this reality
o Traditional flow-control best for processing

= Combinatorial algorithms (e.g., dynamic programming)

= Exploit independencies to compute over a large space of operations
tractably
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PyTorch

Torch: Facebook’s deep learning framework

Nice, but written in Lua (C backend)

Optimized to run computations on GPU

Mature, industry-supported framework
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Why GPU?
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