Frameworks

Natural Language Processing: Jordan
Boyd-Graber

University of Maryland

Slides adapted from Chris Dyer, Yoav Goldberg, Graham Neubig

Natural Language Processing: Jordan Boyd-Graber | UMD

Frameworks

| 11

Neural Nets and Language

Language Neural-Nets

Continuous: poor native support for

structure
Big challenge: writing code that translates between the

{discrete-structured, continuous} regimes

Discrete, structured (graphs, trees)

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 2/1

Why not do it yourself?

Hard to compare with exting models

Obscures difference between model and optimization
= Debugging has to be custom-built

Hard to tweak model

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 3/1

Outline

= Computation graphs (general)
= Neural Nets in PyTorch

= Full example

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 4/1

Computation Graphs

Expression

-
X

graph:

Natural Language Processing: Jordan Boyd-Grabe!

Frameworks | 5/1

Computation Graphs

Expression
bl
- oftw) oF _(oF \'
flu) =u du 8f(u) (Bf(U))

= Edge: function argument / data dependency
= A node with an incoming edge is a function F = f(u) edge’s tail node

= A node computes its value and the value of its derivative w.r.t each
argument (edge) times a derivative g—i

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 5/1

Computation Graphs
Expression

2TA

graph:

F(U, V) =UV

Functions can be nullary, unary, binary, ... n-ary. Often they are unary or
binary.

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 5/1

Computation Graphs

Expression

XTAx

graph:

Computation graphs are (usually) directed and acyclic

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 5/1

Computation Graphs

Expression

T Ax
graph:

f(x,A) =x"Ax

& @

Of (x,A)

T = (l&‘r A A)x
D)

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 5/1

Computation Graphs
Expression

RTAx+b-X+c

graph: 1171-251-3 ZII.

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 5/1

Computation Graphs
Expression

y=%TAx+b-Z+c

graph: f@1,32,23) Eiﬂz

Variable names label nodes

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 5/1

Algorithms

= Graph construction
= Forward propagation
o Loop over nodes in topological order
o Compute the value of the node given its inputs
o Given my inputs, make a prediction (i.e. “error” vs. “target output”)
= Backward propagation
o Loop over the nodes in reverse topological order, starting with goal node
o Compute derivatives of final goal node value wrt each edge’s tail node
o How does the output change with small change to inputs?

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 6/1

Forward Propagation

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7/1

Forward Propagation

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7/1

Forward Propagation

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7/1

Forward Propagation

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7/1

Forward Propagation

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7/1

Forward Propagation

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7/1

Forward Propagation

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7/1

Forward Propagation

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 7/1

Constructing Graphs

Static declaration

= Define architecture, run data
through

= PROS: Optimization, hardware
support

= CONS: Structured data ugly,
graph language

Theano, Tensorflow

Dynamic declaration

= Graph implicit with data

= PROS: Native language,
interleave construction/evaluation

= CONS: Slower, computation can
be wasted

Chainer, Dynet, PyTorch

Natural Language Processing: Jordan Boyd-Graber | UMD

Frameworks

| 8/1

Constructing Graphs

Static declaration

= Define architecture, run data
through

= PROS: Optimization, hardware
support

= CONS: Structured data ugly,
graph language

Theano, Tensorflow

Dynamic declaration

= Graph implicit with data

= PROS: Native language,
interleave construction/evaluation

= CONS: Slower, computation can
be wasted

Chainer, Dynet, PyTorch

Natural Language Processing: Jordan Boyd-Graber | UMD

Frameworks

| 8/1

Words Sentences

Word
embedding H__--_F'DTE‘

LSTM over roat 1 [[1—
+ morphemes /

wiuoe JeG>0e0>0

characters

Alice gave a message to Bob

Phrases Documents

°
i g O 0 Ol« This film was completely unbelievable.
/ —@,

< The characters were wooden and the plot was absurd.

That being said, I liked it.

Language is Hierarchical

Dynamic Hierarchy in Language

= Language is hierarchical

o Graph should reflect this reality
o Traditional flow-control best for processing

= Combinatorial algorithms (e.g., dynamic programming)

= Exploit independencies to compute over a large space of operations
tractably

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 10/1

PyTorch

Torch: Facebook’s deep learning framework

Nice, but written in Lua (C backend)

Optimized to run computations on GPU

Mature, industry-supported framework

Natural Language Processing: Jordan Boyd-Graber | UMD Frameworks | 11/1

Why GPU?

Natural Language Processing: Jordan Boyd-Graber | Frameworks |

Why GPU?

Natural Language Processing: Jordan Boyd-Graber | Frameworks |

