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D # documents
Sd # sentences in document d
Sd,t # groups (i.e. sentences) sitting at table t in restaurant d
Nd,s # tokens wd,s

Nd,·,l # tokens in wd assigned to level l
Nd,·,>l # tokens in wd assigned to level > l
Nd,·,≥l ≡ Nd,·,l +Nd,·,>l

Mc,l # tables at level l on path c
Cc,l,v # word type v assigned to level l on path c
Cd,x,l,v # word type v in vd,x assigned to level l
φk Topic at node k
ηk Regression parameter at node k
τv Regression parameter of word type v
cd,t Path assignment for table t in restaurant d
td,s Table assignment for group wd,s

zd,s,n Level assignment for wd,s,n

kd,s,n Node assignment for wd,s,n (i.e., node at level zd,s,n on path cd,td,s )
L Height of the tree
C+ Set of all possible paths (including new ones) of the tree

Table 1: Notation used for SHLDA’s model and inference

This supplementary material provides more detail for the inference algorithm described in the main
paper. First, we expand the two probabilities defined in Equations 1 and 2.

Equation 1 defines the conditional density of an arbitrary set of tokens vd,x (e.g., a token, a sentence
or a set of sentences) in document d being assigned to path c given all other assignments.

f−d,xc (vd,x) ≡ P (vd,x |v−d,x, cd,x, c−d,x, t, z)

=

L∏
l=1

P (vd,x,l |v−d,x,l, cd,x, c−d,x, t, z)

=

L∏
l=1

P (vd,x,l,v
−d,x,l | cd,x, c−d,x, t, z)

P (v−d,x,l | cd,x, c−d,x, t, z)

=

L∏
l=1

∫
P (vd,x,l,v

−d,x,l |φc,l)P (φc,l |βl) dφc,l∫
P (v−d,x,l |φc,l)P (φc,l |βl) dφc,l

=

L∏
l=1

Γ(C−d,xc,l,· + V βl)

Γ(C−d,xc,l,· + Cd,x,l,· + V βl)

V∏
v=1

Γ(C−d,xc,l,v + Cd,x,l,v + βl)

Γ(C−d,xc,l,v + βl)
(A.1)
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where we use vd,x,l to denote the set of tokens in vd,x that are assigned to level l. Cc,l,v is the number
of times word type v is assigned to node at level l on path c. Cd,x,l,v is the number of times word type
v in vd,x is assigned to node at level l on path c. Superscript −d,x denotes the same count excluding
the assignments of vd,x. Marginal counts are represented by ·’s.

Equation 2 defines the conditional density of the response variable yd of document d given the set of
tokens vd,x assigned to path c and all other assignments

g−d,xc (yd) ≡ P (yd | cd,x, c−d,x, z, t)

= N


1

Nd,·

( ∑
wd,s,n∈{wd\vd,x}

ηcd,td,s ,zd,s,n︸ ︷︷ ︸
other words’ topic regressions

+

L∑
l=1

ηc,l · Cd,x,l,·︸ ︷︷ ︸
vd,x’s topic regression

+

Sd∑
s=1

Nd,s∑
n=1

τwd,s,n︸ ︷︷ ︸
document lexical regressions

)
, ρ


(A.2)

For new node at level l on a new path cnew, we integrate over all possible values of ηcnew,l by using
the following property of Gaussian distribution∫

N (a+ bx; y, σx)N (y;µ, σy) dy = N (a+ bx;µ, b2σx + σy)

Sampling t: For each group (i.e., sentence) wd,s, we need to sample a table td,s. The conditional
distribution of a table t in restaurant d given wd,s and other assignments is

P (td,s = t | rest) ∝ P (td,s = t | t−sd ) · P (wd,s, yd | td,s = t,w−d,s, t−d,s, z, c,η) (A.3)

The first factor is the prior probability of a table in a Chinese restaurant process. For an existing table,
this probability is proportional to the number of groups currently sitting at that table. For a new table,
this is proportional to α, as follow

P (td,s = t | t−sd ) ∝
{
S−d,sd,t , for existing table t;
α, for new table tnew.

The second factor is the joint probability of observing wd,s and yd given wd,s being assigned to
table td,s = t. If t is an existing table, this can be easily computed by multiplying Equation A.1 with
Equation A.2. For a new table, we need to sum over all possible path C+ of the tree, including new
ones.

P (wd,s, yd | td,s = t,w−d,s, t−d,s, z, c,η)

∝
{
f−d,scd,t

(wd,s) · g−d,scd,t
(yd), for existing table t;∑

c∈C+ P (cd,tnew = c | c−d,s) · f−d,sc (wd,s) · g−d,sc (yd), for new table tnew.

where P (cd,tnew = c | c−d,s) is the prior probability of a path c, which is

P (cd,tnew = c | c−d,s) ∝
∏L

l=2

M−d,sc,l

Mc,l−1 + γl−1
, for an existing path c;

γl∗

M−d,scnew,l∗ + γl∗

∏l∗

l=2

M−d,scnew,l

M−d,scnew,l−1 + γl−1
, for a new path cnew which consists of an existing path

from the root to a node at level l∗ and a new node.
(A.4)

Here we use Mc,l to denote the number of tables assigned to node at level l on path c. As usual, the
superscript −d,s denotes the same count but excluding assignments of wd,s.

Sampling z: After assigning a sentence wd,s to a table, we assign each token wd,s,n to a level to
choose a dish from the combo associated with the table. The probability of assigning wd,s,n to level l
conditioning on other assignments is

P (zd,s,n = l | rest) ∝ P (zd,s,n = l | z−s,nd ) · P (wd,s,n, yd | zd,s,n = l,w−d,s,n, z−d,s,n, t, c,η)
(A.5)
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The first factor captures the probability that a customer in restaurant d is assigned to level l, condi-
tioned on the level assignments of all other customers in restaurant d. Since the level distribution is
modeled using a truncated stick breaking prior GEM(m,π), this probability is the posterior expected
value of the lth weight from the stick [1]

P (zd,s,n = l | z−s,nd ) =
mπ +N−d,s,nd,·,l

π +N−d,s,nd,·,≥l

l−1∏
j=1

(1−m)π +N−d,s,nd,·,>j

π +N−d,s,nd,·,≥j
,

where Nd,·,l is the number of tokens in document d assigned to level l; Nd,·,>l is the number of
tokens in document d assigned to level > l; and Nd,·,≥l ≡ Nd,·,l +Nd,·,>l.

The second factor is the probability of observing wd,s,n and yd, conditioning on wd,s,n being assigned
to level l and other assignments. This is computed using Equations A.1 and A.2 as follow

P (wd,s,n, yd | zd,s,n = l,w−d,s,n, z−d,s,n, t, c,η) = f−d,s,ncd,td,s
(wd,s,n) · g−d,s,ncd,td,s

(yd).

Sampling c: After assigning customers to tables and levels, we also sample the path assignments
for all tables. This is important since it potentially changes the assignments of all customers sitting at
a given table, which leads to a well-mixed Markov chain and faster convergence. The probability of
assigning a table t in restaurant d to a path c is

P (cd,t = c | rest) ∝ P (cd,t = c | c−d,t) · P (wd,t, yd | cd,t = c,w−d,t, c−d,t, t, z,η) (A.6)

where we slightly abuse the notation by using wd,t ≡ ∪{s|td,s=t}wd,s to denote the set of customers
in all the groups sitting at table t in restaurant d. The first factor is the prior probability of a path
given all tables’ path assignments c−d,t, excluding table t in restaurant d and is computed using
Equation A.4

The second factor in Equation A.6 is the probability of observing wd,t and yd given the new path
assignments, P (wd,t, yd | cd,t = c,w−d,t, c−d,t, t, z,η) = f−d,tc (wd,t) · g−d,tc (yd).

Optimizing η and τ : We optimize the regression parameters η and τ via the likelihood

L(η, τ ) = − 1

2ρ

D∑
d=1

(yd − ηT z̄d − τT w̄d)2 − 1

2σ

K+∑
k=1

(ηk − µ)2 − 1

ω

V∑
v=1

|τv|, (A.7)

The derivatives of this objective function with respect to each ηk is

dL(η, τ )

dηk
= −1

ρ

D∑
d=1

z̄d,k · (ηT z̄d + τT w̄d − yd)− 1

σ
(ηk − µ)

Since the L1-norm on τ makes L(η, τ ) non-differentiable when τv = 0, we use the sub-gradient
strategy [2] to approximate the gradient. Another heuristic to address this problem is to manually set
the value of τv equal 0 for a subset of word types v in the vocabulary that have high TF-IDFs and
perform L2-norm regularization on the remaining word types. We found that using this heuristic
works reasonably well in practice and is able to speed up the optimization procedure significantly
(depending on how large the set of word types that have τv = 0).
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