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Abstract.

We propose an approach for modeling, measurement and tracking of rigid and articulated motion
as viewed from a stationary or moving camera. We first propose an approach for learning temporal-
flow models from exemplar image sequences. The temporal-flow models are represented as a set of
orthogonal temporal-flow bases that are learned using principal component analysis of instantaneous flow
measurements. Spatial constraints on the temporal-flow are then incorporated to model the movement
of regions of rigid or articulated objects. These spatio-temporal flow models are subsequently used as
the basis for simultaneous measurement and tracking of brightness motion in image sequences. Then
we address the problem of estimating composite independent object and camera image motions. We
employ the spatio-temporal low models learned through observing typical movements of the object from
a stationary camera to decompose image motion into independent object and camera motions. The
performance of the algorithms is demonstrated on several long image sequences of rigid and articulated
bodies in motion.

keywords: Tracking, Optical Flow, Camera Motion, Non-rigid Motion, Motion Learning.

1. Introduction with respect to known physical constraints. This
turns out to be a rather daunting enterprise, due
to the difficulties of identifying body parts in nat-

Tracking the motion of a human body in action ural video imagery and the challenges of develop-
is an exceptionally challenging computer vision ing efficient computational methods for modeling
problem. Even ignoring the fine structure of the and enforcing such physical constraints. Particu-
hands, a human body is composed of fourteen ba- larly, monocular viewing and clothing present sig-
sic parts, several of which can move in quite in- nificant challenges to a 3D physically-based ap-
dependent ways. Natural human motions, such proach. In the rest of this paper, we consider an
as walking, kicking, etc., are, of course, very con- alternative 2D approach to modeling and measur-
strained by factors including motion symmetries, ing human motion.

static and dynamic balance requirements, gravity,

etc. A physics-based approach to analysis of hu- While appearance-based (intensity) representa-
man motion might involve locating and tracking tions have been demonstrated for modeling and
the limbs and extremities of the body under con- recognition of faces and textured 3-D objects

trol of a mechanism that optimizes the tracking (Murase and Nayar, 1995, Turk and Pentland,
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1991), this approach does not lend itself directly to
the diverse and unconstrained appearance of hu-
mans in motion sequences. The main challenges to
appearance-based methods are viewpoint depen-
dence, dealing with appearance variability (due to
changes in clothing, shadowing, body size and pro-
portions between individuals), self-occlusion, etc.
An alternative approach is to develop appearance-
based models for the flow trajectories of humans
(called motion appearances), and to use these
models to constrain the measurement and track-
ing of human motion.

In this paper we show how low-dimensional
motion appearance models of articulated human
movement can be reconstructed from observations
of exemplar movements and how these models can
be used to measure and track other humans per-
forming similar movements. We present experi-
mental evidence that suggests that the number of
viewpoint-dependent motion appearance models
that one would need to model a given movement
is not too large (see also the discussion in (Ya-
coob and Black, 1998)), and also show how these
models can be employed when there is partial /full
occlusion of some of the body parts (specifically,
we demonstrate an ability to track both legs in
motion from viewpoints in which one leg occludes
part of the other).

The motion appearance models are created by
applying a standard principal components analy-
sis to time sequences of parametric models of body
part motion. These motion parameters of the ex-
emplar movement observations are obtained using
the “cardboard” body model introduced in (Ju et
al., 1996), which employs the simple constraint
that the instantaneous motion of body parts must
agree at the joints where those parts meet. These
learned motion models are then used in a spatio-
temporally constrained image-motion formulation
for simultaneous estimation of several rigid and
non-rigid motions. Much of the analysis is carried
out in a multi-temporal optical flow framework de-
scribed in (Yacoob and Davis, 1999), which is cru-
cial for analyzing time-varying images of humans
since the instantaneous motions of body parts can
span a broad spectrum of magnitudes, from sub-
pixel to many pixels per frame.

The measurement of human motion is further
complicated when the camera itself in motion. In

this case, the motion measured at each point on
the human body is composed of two independent
sources, body-part motion and camera motion.
The aim 1s to recover human motion relative to
the static environment after compensating for the
estimated motion of the camera.

Although it may be possible, in principal, to
compute camera motion first and then factor it
out during object motion estimation (e.g., see a
related example (Tian and Shah, 1997)), a recov-
ery of the structure of both the scene and the
object are necessary to decompose the flow over
the object region into the object and camera mo-
tion components (this was not dealt with in (Tian
and Shah, 1997)). This structure recovery is itself
a very challenging problem due to the effective
instantaneous change of scene structure as a re-
sult of the composite motion. Furthermore, such
techniques generally depend on the availability of
a “rigid” background for camera motion estima-
tion. However, humans are able to recognize typ-
ical human movements from a moving platform
even when no such rigid background is available-
l.e., in situations where the motion of every pixel
is a combination of camera and independent mo-
tion. Therefore we seek to determine conditions
under which the object and camera image motion
can be separated.

The simultaneous occurrence of object and ego-
motion is typical for the human visual system. In
many routine activities, humans easily identify in-
dependently moving objects and analyze their mo-
tions while they themselves are in motion (for ex-
ample, all ball games involve some type of human-
object interaction during simultaneous indepen-
dent motion). Also, human interactions often
occur during simultaneous motion; e.g., normal
walking in a crowd involves estimating indepen-
dent human motion; in dance, composite motion
estimation is critical to performance.

Composite object and self motion can be re-
solved by the human visual system equally in a
textured or textureless static environments (e.g.,
ball catching indoors or in open-air while looking
upward). This motivates us to explore the esti-
mation of composite motion based only on the ob-
served motion of object regions alone, disregard-
ing the (possibly unavailable) motion field due to
the static environment.



Learned Models for Estimation of Rigid and Articulated Human Motion from Stationary or Moving Camera

We note that certain object or camera motions
may lead to unresolvable ambiguities in composite
motion estimates. For example, when one views a
vehicle from a second moving vehicle (disregard-
ing the static environment cues) it is ambiguous
whether the observed vehicle is moving and in
what direction or with what speed (i.e., the well
known “train motion illusion”).

Based on these observations we will propose a
model-based approach for estimating the compos-
ite 2D motion of object and camera. We will
demonstrate the performance of the approach on
rigid and articulated bodies in motion. We make
the following simplifying assumptions,

1. The independently moving object 1s observed
“off-line” from a stationary camera while it
performs its typical movements. This allows
us to construct a representation of these types
of movements (Yacoob and Davis, 1998).

2. A 2D image motion estimation framework is
used to describe both the object and the cam-
era motions. As a result, the motion trajec-
tory model of the object is view-point depen-
dent. Therefore, only camera motions that do
not “significantly” alter the appearance of the
independent object motion can be recovered
(e.g., if the object is free falling, the camera
cannot rotate by 90 degrees so that the ob-
ject appears to move horizontally). This will
be made more precise in the body of the pa-
per.

3. The image region corresponding to the in-
dependently moving object is identified in
the first frame of the image sequence; per-
haps by algorithms such as (Fejes and Davis,
1998, Fermuller and Aloimonos, 1995, Irani
and Anandan, 1996). This region will be the
basis for estimation of the simultaneous mo-
tion of the object and camera.

In Section 2 we discuss related research. Sec-
tion 3 develops the learning and measurement of
temporal models for image motion. In Section 4
we develop the spatio-temporal flow equations for
parameterized regions. In Section b an illustration
of the modeling and estimation of spatio-temporal
flow for rigid and articulated motions is shown.
Section 6 develops the modeling and measurement
of composite motions. In Section 7 several exam-

ples for composite motion estimation are shown
for rigid and articulated motions. Finally, Section
8 summarizes the paper and discusses some open
problems.

2. Relevant Research

2.1. Human motion measurement from a sta-
tionary camera

Approaches to tracking the movement of humans
have focused on detecting and tracking the body
silhouette edges of the figure in the images to avoid
the interference of the non-rigid motion of cloth-
ing. Gavrila and Davis (Gavrila and Davis, 1996)
proposed a model-based approach for tracking and
recovering the 3D body structure from image se-
quences taken from multiple cameras. The ren-
dering of the edges of the 3D body model are
matched to the edge images in each camera at
each time instant to recover the degrees of freedom
of each body part using an elaborate parameter
search procedure. A somewhat similar approach
involving a single camera has been proposed by
(Goncalves et al., 1995), where a Kalman filter
was used to estimate a reduced set of the degrees
of freedom of a moving arm from a set of points
sampled from the image based on rendering the 3D
arm structure (thus, requiring prior knowledge of
seven parameters of the arm). Yamamoto et al.
(Yamamoto et al., 1998) proposed an approach
that tracks a 3D model of a human body as seen
from multiple cameras. A 3D model is initialized
over the regions of calibrated cameras. Then, a di-
rect estimation of motion parameters of 12 artic-
ulated parts of the body is performed. Baumberg
and Hogg (Baumberg and Hogg, 1994) proposed
an approach for tracking the outline of a moving
body using an active shape model. Modal-based
flexible shape models were used to capture the
considerable outline variations in the human sil-
houette during movement. Rohr (Rohr, 1994) de-
scribed a model-based approach for tracking and
recognizing human movement from a single cam-
era. Several movement states of human figures
pre-captured as straight line images were used to
best-fit the area of detected change in the image
sequence by maximizing a similarity measure.
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Pentland and Horowitz (Pentland and Horowitz,1991)2. 2.

describe the fitting of a 3D physically-based ar-
ticulated model to optical flow data. Parts of a
person are described as superquadrics with con-
straints on the articulated motion of the parts.

In contrast to these approaches which require
various 3D models of the body, Ju et al. (Ju et al.,
1996) proposed an approach for tracking humans
in motion assuming that a person can be repre-
sented by a set of connected planar patches. To
track this articulated motion, recovery of the rel-
ative motion of each of the limbs was performed
iteratively. This is done by first estimating the
motion of the torso and removing it from the im-
age sequence using warping. The relative motions
of the thighs, upper arms, and head can be then
estimated relative to the torso-stabilized images.
Finally, the image sequence can be stabilized with
respect to these regions and the relative motions of
the calf and lower arm regions can be estimated.
Furthermore, the planar model is augmented to
model articulated motion by constraining the mo-
tion of connected patches to be the same at the
point of articulation.

Bregler and Malik (Bregler and Malik, 1998)
recently proposed a 3-D approach for tracking hu-
man parts using a kinematic chain model. Each
part motion is represented by a six-parameter
model that encodes the relative scale and twist
motion between consecutive frames (where twist
motion represents the parts motion as a rotation
around a 3D axis and a translation along this
axis). The representation is linearized assuming
an orthographic projection.

Most existing work on human motion tracking
assumes that the region of the human figure has
been initially detected and the body part regions
localized. However, this remains a challenging
goal despite some encouraging results reported in
(Haritaoglu et al.,1998). Upon detection of human
silhouettes (using foreground/background detec-
tion), Haritaoglu et al. (Haritaoglu et al.,1998)
used a rule-based system to label the human body
parts allowing for occurrence of four canonical
postures.

Human motion estimation from a mouving
camera

In recent years there has been increased inter-
est in independent object motion detection and
tracking. The detection of independently moving
objects has generally been posed as the problem
of detecting regions in the image that are mov-
ing non-rigidly (see (Fejes and Davis, 1998, Fer-
muller and Aloimonos, 1995, Irani and Anandan,
1996, Tian and Shah, 1997)). Qualitative (Fejes
and Davis, 1998, Fermuller and Aloimonos, 1995)
and quantitative (Irani and Anandan, 1996, Tian
and Shah, 1997) information derived from the im-
age flow field is used to infer camera motion and
to segment the image into independently moving
patches. In (Trani and Anandan, 1996, MacLean
et al., 1994, Tian and Shah, 1997), assumptions
on the structure of the scene (Irani and Anan-
dan, 1996) and camera motion (MacLean et al.,
1994, Tian and Shah, 1997) were employed to seg-
ment the image into stationary and moving ob-
ject regions. A limitation of these approaches is
their assumption that the image motion is pre-
dominantly rigid, and that moving objects occupy
a relatively small region in the image.

Some related work on detection and estima-
tion of multiple motions have been reported for
the 3D case (Boult and Brown, 1991, Costeira
and Kanade, 1995, Tian and Shah, 1997) (camera
motion was involved in (Tian and Shah, 1997),
while a stationary camera was used in (Boult and
Brown, 1991, Costeira and Kanade, 1995)). Dis-
placements of sparse features were used to seg-
ment point motions (Boult and Brown, 1991, Tian
and Shah, 1997) or recover different structures
(Costeira and Kanade, 1995) that reflect motions
in non-overlapping regions. In these approaches
an orthographic projection was assumed. Al-
though demonstration of performance for two in-
dependent motions of rigid objects was shown
(Costeira and Kanade, 1995), it is not clear that
these algorithms remain effective when a larger
collection of independently moving objects are
present in the scene such as in the case of human
motion in front of a moving camera. The compos-
ite camera and object motion estimation problem
differs from these multiple motion problems be-
cause of the confounding of camera and object
motion over the object region. A motion decom-
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position is needed here in contrast to a spatial
segmentation (Boult and Brown, 1991, Costeira

and Kanade, 1995, Tian and Shah, 1997).

3. A Temporal Model for Image Motion

In this section we extend the traditionally instan-
taneous formulation of image motion in the time
dimension. As a result, the motion vector (u,v)
of a point (z,y) is extended in time by defining a
motion trajectory, (u(s),v(s)) (s = 1,...,n) where
(u(s), v(s)) is the image motion of point (z,y) be-
tween time instants s — 1 and s. This expansion
of a point in 2D to a trajectory increases the di-
mensionality from R? to R> since the trajectory
is equivalent to a set of points (s, u(s),v(s)) in
(s, u,v) space.

In the following we employ two temporal vari-
ables s and ¢. The global time ¢ denotes time rela-
tive to the beginning of the image sequence while
s denotes time relative to the time instant ¢. Let
I(xz,y,t) be the image brightness at a point (z,y)
at time ¢t. The brightness constancy assumption
of this point at a subsequent time s,1 < s < n, is
given by

y—i—Z ), t+s)

Vs, s=1,..,n(1)

I(x,y,t _Ix—l—z

where (u(s),v(s)) is the horizontal and vertical
instantaneous image velocity of the point (z,y)
between frames (t + s — 1) and (¢ + s) and
[Z;i:l u(j),ZjIl v(j)] is the cumulative image
motion in the horizontal and vertical directions
between time instant ¢ and ¢ + s. The special
cases where (u(s),v(s)) are constant or satisfy a
constant acceleration model relative to ¢ were con-
sidered in (Yacoob and Davis, 1999):

u(s) = bg + bys
v(s) = ba + bzs

(bo, b1, ba, b are the constant and linear order pa-
rameters of the model). TLet the range of time
over which temporal-flow (sequences of instanta-
neous flow) is estimated be s = 1,..,n. Expanding
Equation (1) using a Taylor series approximation
(assuming smooth spatial and temporal intensity

variations) and dropping terms results in

0="Du(a,y,t) Y uli)+ I y(2,9,6) ) v(j) +
j=1 ji=1
sly(z,y,t) V¥s,s=1,..,1n(2)

where I* is the s-th frame (forward in time rel-
ative to I) of the sequence, and I, 1%, and I%;
are the spatial and temporal derivatives of image
I? relative to 1. It is important to limit the range
of s so that the respective derivatives can be ac-
curately computed. Clearly, if a large n is cho-
sen so that large motions can occur between im-
age I' and I” the differential representation does
not hold. In the context of human motion we use
a high frame rate camera (85 and 99 Hz) to re-
duce the per frame motion to a couple of pixels,
so that by using a pyramid estimation process we
can compute the derivatives for 3-5 frames at a
time.

Since Equation (2) is underconstrained for
the recovery of (u(s),v(s)), the estimation of
(u(s),v(s)) can be ordinarily posed as an error
minimization over a small region R using a robust
error norm, p(x,0.), that is a function of a scale
parameter .. The error of the flow over R is,

5

E(u,v,8) = Z p(st(l‘,yat)Zu(j)'i'
(z,y)ER j=1
Iy(z,y,t) Zv(j) +s%y(x,y,t),0.) (3)

assuming points in R conform to the same motion
trajectory. We have n equations of the form of
Equation (3), one for each time instant. The #ime-
generalized error is defined as

- Y

5

(2, y,1) > ul(j) +

s=1(z,y)ER Jj=1
Iy, y, )Y v(G) +s(x,y,1),0.) (4)
j:l

4. Learned Parameteric Image Motion

In subsection 4.1 we show how the space of flow
trajectories can be efficiently encoded using a lin-
ear representation so that a parametric model of
trajectories is created. Subsection 4.2 reformu-
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lates the parametric model of trajectories to ex-
ploit spatially parameterized optical flow models.
Finally, in subsection 4.3 we describe the compu-
tational aspect of the algorithm.

4.1.  Learning Temporal-Flow Models

As defined, motion trajectories (u(s),v(s)) (s =
1,...,n) require the computation of the trajectory
of a single point which involves estimating the
value of 2n parameters. In reality, however, physi-
cal processes constrain the space of actual motion
trajectories of points. Physical considerations in-
clude static and dynamic properties of real object
motions. Notice that these processes do not ap-
ply at the instantaneous level since a point can
move with any velocity (u,v) and that the addi-
tion of the temporal dimension implicitly intro-
duces physical (e.g., Newtonian) constraints pro-
jected onto the camera plane. In this subsection
we propose an approach for learning a model of
the space of feasible trajectories.

Purely spatial constraints on image motions
were recently proposed by Black et al. (Black et
al., 1997). There, a low dimensional representa-
tion of the spatial distribution of image motions
in a region was learned and used in recovering mo-
tion in image sequences. This spatial model pro-
vides only an instantaneous constraint on flow. In
comparison, the temporal-flow models described
here express how flow changes over time at (for
the moment) a single point. In the subsequent
section we explain how our temporal-flow model
can be extended to include spatial constraints as
well.

Temporal-flow models are constructed by ap-
plying principal component analysis to exemplar
flow sequences. So, the functions (u(s), v(s)) for
s = 1...n are approximated by a linear combina-
tion of a temporal-flow basis-set of 1 x 2xn vectors,
U;. The flow vector € = [(u(s),v(s))]5=; can be
reconstructed using

q

e=[e(f)]j=1,. 24n = [Z CiUi,j]]z'il (5)

i=1

where €, the temporal-flow vector, denotes the
concatenation of u(s) and v(s) and ¢; is the ex-
pansion coefficient of the U;-th temporal-flow ba-

sis vector and ¢ is the number of vectors used as
the basis-set.

The temporal-flow basis-set is computed during
a learning stage in which examples of the specific
image-motions are subjected to principal compo-
nent analysis. Specifically, let (u!(s),v'(s)) for
s = 1,...,n be the i—th instance (out of N in-
stances) of an incremental flow series measured for
an image point (#,y) at time instants s = 1,...,n.
The estimation of (u’(s), v’(s)) can be carried out
either using the multi-scale approach proposed in
(Yacoob and Davis, 1999) or by direct two-frame
flow estimation technique.

Let & be the vector obtained by concatenating
u'(s) for s = 1,...,n and v%(s) for s = 1,...,n. The
set of vectors & can be arranged in a matrix A
of 2 xn rows by N columns. Matrix A can be
decomposed using Singular Value Decomposition
(SVD) as

A=UxvV" (6)

where U is an orthogonal matrix of the same size
as A representing the principal component direc-
tions in the training set. X is a diagonal ma-
trix with singular values o1, 09, ...,0n sorted in
decreasing order along the diagonal. The N x N
matrix V7 encodes the coefficients to be used in
expanding each column of A in terms of principal
component directions. It is possible to approx-
imate an instance of flow sequence e using the
largest ¢ singular values o1, 04, ..., 04, so that

q
e = ZC;U} (7)
=1

where e* 1s the vector approximation, ¢; are scalar
values that can be computed by taking the dot
product of € and the column U;. In effect this
amounts to projecting the vector e onto the sub-
space defined by the ¢ basis vectors. The pro-
jection can also be viewed as a parameterization
of the vector e in terms of the basis vectors U
(I = 1..q) where the parameters are the ¢;’s.

Using the temporal-flow basis set Equation (4)
can also be expressed as:

Ep(u,v) =Y > ol Ty D> el

s=1 (z,y)ER j=1li=1
n+s q

ST U]+ s 00) (8)

j=n+1:i=1
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where [ ]7 is the transpose of the temporal-flow
vector. Notice that the summation of the linear

combination includes only the s values of u%ﬁ@:[ao(s) ai(s) az(s) as(s) as(s) as(s) as(s) ar(s)]

v. Equation (8) essentially describes how image
motion of a point (#,y) changes over time under
the constraint of a temporal-flow basis-set.

4.2.  Parameterized Spatio- Temporal Image- Motion

Recently, it has been demonstrated that spatially
parameterized flow models are a powerful tool for
modeling instantaneous image motion ((Black and
Yacoob, 1997, Black et al., 1997, Ju et al., 1996)).
The temporal-flow learning and estimation algo-
rithms can be extended to spatially parameterized
models of image flow. In this section we describe
the learned estimation of polynomially parameter-
ized image motion models.

Recall that the traditional flow constraint as-
sumes constant flow over a small neighborhood
around the point (#,y). Over larger neighbor-
hoods, a more accurate model of the image flow is
provided by low-order polynomials (Adiv, 1985).
For example, the planar motion model (Adiv,
1985) is an approximation to the flow generated
by a plane moving in 3-D under perspective pro-
jection. The model is given by

U(J:,y) = ao+a1l‘+azy+a6l‘2—|—a7xy
V(e,y) = as+ asr + asy + asry+ ary® (9)

where a;’s are constants and (U, V) is the instan-
taneous velocity vector. The affine model is the
special case where ag = a7 = 0 and generally holds
when the region modeled is not too large or sub-
ject to significant perspective effects. Equation
(9) can be written in matrix form as

vt = xp”? (10)
where
_[1 2y 000 2? 2y
X(z,y) = 0001 zyazy v |’
P:[ao a; as as a4 a5 dg a7]

To exploit the economy of parameterized models,
we re-formulate the temporal-flow models to learn
the temporal evolution of the generating parame-
ters of the planar model as opposed to the flow
values. Specifically, consider the parameters a; to
be a function of s (similar to the flow formulation),

so that

n

where P(s) is the image motion parameters com-
puted between time instants s — 1 and s.
Equation (8) can be rewritten as

Ep(u,v) =Y Y p[I° XY PG +sI%,00)
s=1 (ry)ER i=1
(11)

where R denotes the region over which the planar
motion model is applied. Notice that the term
Z;Il P(j) requires proper region registration be-
tween time instants. P(s), s = 1,...,n, can be rep-
resented by a linear combination of basis vectors
in a manner similar to the temporal-flow represen-
tation developed earlier. Each basis vector, L; is
a vector of size 8 % n since it generates the eight
parameters for each time instant s. We can write

P(s), s =1,...,n, as the following sum

e=[e(j)]j=1,. 8n = [Z eiLi 152, (12)

where ¢; is the expansion coefficient of the L;
temporal-parameter basis vector. Equation (11)
can now be rewritten as

Ep(u,v) =3 > p([I*I)X[D> Y eilij, ...

s=1 (z,y)ER j=1i=1
n+s q

D7D L] 451, 0d)l3)

j="n+1i=1

The minimization of Equation (13) results in
estimates for the parameters ¢;. The above treat-
ment of polynomial flow is also applicable to the
orthogonal-basis modeling of spatial flow recently
proposed in (Black et al., 1997). The coefficients
used in the linear combination replace the param-
eters a; in the above equations.

4.3.  Computation Details

The robust error norm and 1its derivative are
adopted from (Geman and McClure, 1987),

z? 2x0,

plz,oe) = P Y(r,0.) =

s=1



8 Yacoob and Davis

The minimization of Equation (13) is carried
out using a descent method, Simultaneous Over-
Relaxation (SOR). The minimization of Ep(u,v)
with respect to ¢; is achieved using an iterative
update equation, so at step ¢+ 1

1 0Ep

(a+1) — ..(9) _
€ € wT(Ci) 662'

(') (15)

where 0 < w < 2 is an overrelaxation parameter
which is used to overcorrect the estimate of ¢;(¢+1)
at stage ¢ + 1. The value of w determines the rate
of convergence. The term 7T'(¢;) is an upper bound
on the second partial derivative of Ep

8n

ZLmzmaXd/ (16)
j

2
E

T(Ci) > 0" Ep =
ji=1

= 0%¢

where Lm'z is the square of element j of L; and

max 1’ = max a—zp(x o) = 2 (17)
e g2 o2

To achieve a globally optimal solution the ro-
bust error norm p is started with a large enough
scale parameter o, to find a solution using the
SOR, technique. Then this process is iteratively
repeated while decreasing o, and starting with
the last estimate. The choice of a large enough
0. guarantees convexity of the error function at
the beginning of the process, which is followed by
the use of the Graduated Non-Convexity method
developed in (Blake and Zisserman, 1987). The it-
erated decrease 1n o, reduces the influence of the
outlier measurements and thereby refines the es-
timates.

This implementation employs the standard spa-
tial coarse-to-fine strategy (Bergen et al., 1992)
that constructs a pyramid of the spatially filtered
and sub-sampled images and computes the coeffi-
cients initially at the coarsest level and then prop-
agates the results to finer levels.

5. Experiments with Stationary Camera
5.1. A Rigid Motion Fxample

The use of a temporally parameterized motion
model that explicity accounts for image velocity
and acceleration and is computed directly from
image intensity variations was discussed in (Ya-

coob and Davis, 1999). Here, we demonstrate how
a learned spatio-temporal flow model can capture
image acceleration by observing a book free-falling
in an image sequence.

The learning of the temporal-flow model is per-
formed as follows,

¢ The area corresponding to the book is man-
ually segmented in the first frame in the se-
quence.

¢ The image motion parameters of this area are
estimated for 40 frames assuming a planar
model (flow estimation is carried out between
consecutive images only using the parameter-
ized flow algorithm of (Black and Anandan,
1996)).

¢ A basis set for the temporal-flow parameters
is computed by performing PCA on the four
non-overlapping groups of 10 consecutive in-
stanteneous flow vectors.

¢ The basis set is used to compute the coeffi-
cients using Equation (13) for the whole se-
quence (100 frames).

In this experiment the first eigenvalue captured
99.9% of the variation among the 4 data-sets
as one might expect for such a uniform motion.
Therefore, a single eigenvector is used in the mo-
tion estimation stage.

KP: INSERT FIGURE 1 HERE

Figure 1 shows the results of tracking the book
using the spatio-temporal flow model. The graphs
in the middle row show the value of ag(s) and
az(s) (for s = 1...10) of the eigenvector used in
estimation. While ag(s) is a nearly zero (corre-
sponding to little horizontal motion), the verti-
cal motion component ag(s) is linear with positive
slope that implicitly captures the constant accel-
eration of the fall. The lower graph shows the es-
timated coefficient ¢y throughout the long image
sequence. This coefficient grows linearly, which is
what one would expect since the motion is linear
order (i.e., a constant acceleration model).

The learned spatio-temporal models can be ap-
plied to other objects performing similar motions.
The spatio-temporal flow basis-vector learned for
the book 1s used to estimate the falling of a differ-
ent object, a cardboard box. Figure 2 shows the
images, the tracking results and the coefficient ¢
that is also recovered throughout the falling. No-
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tice that despite the accurate translational track-
ing some counterclockwise rotation is recovered.
This is not surprising since the motion of the book
included a small rotational component, while the
box fell without rotation. The single basis vector
used encodes both the falling and rotation and
therefore these cannot be segregated during esti-
mation.

It is worth noting that the motion trajectory of
the box creates a line parallel (see Figure 2 bottom
row) to the falling book’s trajectory. Equation
(13) minimizes the error within a subspace (of a
single basis vector, in this case) in which the linear
combinations of one line lead to parallel lines.

KP: INSERT FIGURE 2 HERE

5.2. Learned Models of Articulated Human Mo-
tion

The cardboard (Ju et al., 1996) model for tracking
five-part human movement (arm, torso, thigh, calf
and foot) involves recovering 40 motion parame-
ters per frame; this requires substantial computa-
tion. Furthermore, due to the chain-like structure
of the tracking, any error in the computation in
an early part (in the chain structure) propagates
to the succeeding parts. Learning models of artic-
ulated movement can lead to much simpler rep-
resentations in which redundancies are removed
and motion parameter couplings learned. A set
of samples of the motion parameters of the parts
of articulated human covering one entire period
of an activity are modeled using principal com-
ponent analysis. In the following, we use video
cameras with resolution 256 x 256 at 99Hz and
686 x 484 at 85Hz; this temporal sampling rate is
high enough for us to effectively employ differen-
tial flow estimation over several frames. In most
of the sequences used here the full human body
is observed performing an activity; therefore, the
image support for each body part is usually lim-
ited to a fairly small number of pixels.

Similar to the accelerating book example, we
assume initially that:

¢ The body is manually segmented into five
parts in the first frame.

¢ People are moving at a similar viewing angle
to the camera during the modeling and mea-
surement phases.

¢+ A single activity, such as “walking,” is learned
and tracked.

Learning of the “walking” cycle spatio-temporal
flow model is performed by first employing the
algorithm of Ju et al. (Ju et al.; 1996) to com-
pute each region’s instantaneous motion param-
eters during the observed cycle of the activity.
Then, the motion parameters of the activity cy-
cles of several people are used to derive the basis-
set of spatio-temporal flows of the activity. It
is worth noting that although the basis-vectors
are computed for a whole cycle of “walking” the
spatio-temporal motion recovery is conducted us-
ing a small computation temporal window (typi-
cally 6-10 frames) that slides along the movement.
The five parts are tracked using Equation (13), the
body parts are considered as a single object with
individual motion parameters for each part coor-
dinated through the principal components model.

KP: INSERT FIGURE 3 HERE

Figure 3 displays a few frames of a walking se-
quence from the training set of one subject with
the five-part body tracking as in (Ju et al., 1996).
Notice that the tracking accumulates errors, some
of which also appear in the spatio-temporal flow
tracking. In learning the model from ten peo-
ple’s gait!, the first basis vector accounts for about
67% of the variations and reflects very clearly the
“walking” cycle. The next 4 basis vectors capture
about 23% of the variations and capture imaging,
individual variations and some differences in im-
age acquisition conditions.

Applying this model to measure a human move-
ment in a new sequence requires temporally “reg-
istering” the model to the observation at the ini-
tial time ¢y. Determining the temporal stage of
the activity plays an important role since it de-
termines the local temporal window in the basis-
vectors which is employed in the error minimiza-
tion. Omne simple method to determine the cor-
rect stage is to match the initial frames against
all stages of the performance of the activity. At
each matching instance the quality of the match
1s measured as the ratio of the pixels explained by
the basis-vectors over the overall number of pixels.
The best match 1s that in which brightness motion
can be best explained by the basis-vectors.

To demonstrate the performance of the tempo-
ral initialization we use the sequence shown in
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Figure 5 and match its frames against all tem-
poral stages of “walking” as captured by the basis
set. Figure 4 shows the percentage of outliers (i.e.,
points not explained well by the basis vectors) as
a function of the temporal stage of “walking.” In
this example the least number of outliers occurs in
the beginning of the sequence and after about 112
frames which is the beginning of the next walking
cycle.

KP: INSERT FIGURE 4 HERE

Figure 5 shows the results of tracking a new
instance of walking of a subject using only the first
basis-vector of the spatio-temporal flow. It also
shows the coefficient, ¢g, recovered throughout the
sequence (n = 8). Low image contrast leads to
accumulation of tracking errors. Figure 6 shows
the tracking results using the first one, two and
three basis vectors. A close look at the results
reveals that the best tracking is achieved using
the first two basis vectors. The third basis vector
degraded the performance since the information
captured by this vector is relatively small (about
5%) and does not provide an effective constraint
on the brightness.

KP: INSERT FIGURE 5 HERE
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The learned spatio-temporal flow models re-
main effective in tracking articulated motion even
when distance from the camera and the viewpoint
vary from the training set. The variation in dis-
tance introduces practical problems of optical flow
estimation since the model was learned for a “dis-
tant” object from the camera, and the tracking
is conducted at a closer distance; here, the non-
rigid motion of clothing and stronger perspective
effects are visible. Varying the viewpoint poses a
more fundamental problem since the appearance
of the activity changes as we move farther from
the learned viewpoint. In the following figures we
provide results in which the viewing angle is about
20 degrees off the fronto-parallel plane. In exper-
iments, not shown here; in which the viewing an-
gle was close to 45 degrees off the fronto-parallel
plane, we observed that the calf and foot are not
tracked well while the torso and thigh tracking
remained satisfactory. Moreover, the estimation
process was observed to rely heavily on the cor-
rectly tracked torso and thigh, while the other
parts were found to be nonconforming with re-

spect to the spatio-temporal flow model of walk-
ing.

Figures 7 and 8 show the tracking of walking
over a long sequence, where the distance and view-
ing angle are different from those used in learning.
Also, in Figure 8, a subject not part of the training
set is performing the activity. This example shows
tracking errors, especially at the body extremities,
(note that most of these errors are due to learn-
ing errors from the original data-for example the
enlargement of the foot area).

Learned spatio-temporal flow of activities can
also be employed for tracking partially occluded
parts. We demonstrate the performance of our
approach on sequences of two activities, walking
and marching. These activities involve symmteric
movement of the legs and arms that are half a
cycle apart. Therefore, once a motion model for
the visible parts is learned it can be applied to
the occluded ones. We assume that the difference
in distance between the legs and the camera are
equal to the distance of the body from the camera.
In the first frame we initialize the regions for nine
body parts (when parts are occluded we simply
hypothesize their locations). Then, we minimize
Equation (13), where all nine regions are regarded
as a single object with multiple motion parameters
that are represented by the two-phase motion of
the right and left side parts of the body. Only the
un-occluded pixels of each region are used in the
motion recovery while the occluded part is moved
to reflect the movement in the activity model.
Each activity model was learned separately from
a single example of its performance.

The results of the tracking of the two activities
in long sequences are shown in Figures 9-11. The
two legs are tracked well despite some inaccura-
cies that are due to the learned model inaccura-
cies. One important property of the models we
propose is that the recovered coefficients readily
incorporate the interpretation of the activity seen
in the image. In the case of multiple familiar ac-
tivities we employ these models competitively to
“account” for the brightness changes in the image.
The model that best accounts for the brightness
motion achieves the “recognition” of the observed
activity.

KP: INSERT FIGURE 7 HERE
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6. Modeling and Measuring Composite
Motion

We consider next observing human movement
from a moving camera. First consider the sim-
pler case of a single rigid object and the flow that
is observed due to the composite motion. Let
P = (X,Y,Z) be an object point and p = (z,y)
be its projection on the image plane of the cam-
era. Object motion leads to flow (u®,v°) at p.
The motion of p is also affected by camera self
motion. Let the flow resulting from the camera
motion be (u® v%); For the composite motion we
have a brightness constancy

Iz, y,t) = I(x+u’+u’, y+v°+0°t+1). (18)

The estimation of wu,, u,, v, and v, 1s undercon-
strained (one equation with four variables) and
an infinite number of solutions exists unless con-
straints on object and camera motions are given.
Employing a neighborhood-region flow constancy,
as 1s typically done, does not allow us to separate
the flow into 1ts camera and object components.

Let I(z,y,t),...,I(z,y,t + n) be a sequence of
n + 1 images. The brightness constancy assump-
tion for any time instant s,1 < s <n, 1s

I(e,y,t) = I(x + ZUO(]) + Zuc(j),

w
w
w
w

LI w0),]

j=1 ji=1 ji=1 ji=1

v (5)]

are the cumulative image motion in the horizontal
and vertical directions between time instant ¢ and
t+ s for point p due to object and camera motions,
respectively. The two, 2n long vectors constructed
by concatenating the horizontal and vertical flows
at each time instant ¥Vj,7 =1,...,n

O=[u(), ()i, C=[() v ()]s

will be referred to as the the motion temporal tra-
jectories of point p due to object and camera mo-
tions, respectively. The vectors C and O define
two points in R?". Consider the separability of
the sum C + O with respect to the angle between

the vectors as expressed by the normalized scalar

o .
product cos(y) = T3

o If cos(y) = 1 then the vectors are parallel and
there are infinite decompositions of the sum
into two vectors C' and O. This occurs, for
example, in the case of the train motion illu-
sion.

o If cos(y) = 0 then the vectors are separable.
If we have a model for the class from which
the vector € is constructed we can accurately
divide the sum into its correct components.

o If 0 < cos(y) < 1 then the vectors are sep-
arable only in their orthogonal components.
Specifically, the projection of C onto O and a
hyperplane perpendicular to O results in one
component that is parallel to O that may not
be recoverable, and a second component that
is orthogonal to O and can be fully recovered if
we know the model that C is drawn from. It is
worth noticing that if there exists a structural
relationship between these two projected com-
ponents (e.g., they are of equal length) then
a full separation may again become possible.
Furthermore, if the majority of the points of
the vector belong to the perpendicular com-
ponent then we will show that we can recover
the correct decomposition.

In the rest of this section we will select the rep-
resentations used for €' and O and discuss how
these choices impact the estimation of the two mo-
tion components.

We distinguish between two models of image
motion: general models (Adiv, 1985, Black and
Anandan, 1996, Yacoob and Davis, 1999) and
learned models (Black et al., 1997, Yacoob and
Davis, 1998). The choices of models for use in
composite motion estimation are given in Table 1.
Using general models for both camera and object
motions leads to an underconstrained problem as
reflected by Equation (18). The use of learned
models of camera motion and general models for
object motion has potential only for rigid objects
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moving in simple ways but the extension to de-
formable, articulated objects or complex rigid mo-
tion trajectories is challenging since these motions
are difficult to represent analytically. The case of
both learned object and camera motions is a sim-
plification, as will be discussed later in this paper,
of the general camera motion and learned object
motion models addressed below.

6.1. Camera Motion Model

We employ the standard conventions (Longuet-

ag = —£2,
as =T, /7
ag = —€y
a7 =8,

These eight parameters are estimated by pooling
the motion of many points in R into an overcon-
strained system.

We allow general camera motion but do as-
sume that the camera motion, and so the camera-
induced flow, is time-wise constant? (between con-
secutive frames) over the temporal window of

Higgins and Prazdny, 1980) for representing the computation (i.e., s = 1,...,n),

spatio-temporal variation of the optical flow as . . .

the camera moves through a static scene. Assume u(z,y,s) = u(z,y,1) = ap+ 12 + asy + asz” + arey
a camera moving in a static scene with instan- vi(x,y,8) = v(x,y,1) = az + asx + asy + asry + ary’
taneous 3D translational velocity (75, T, T) and (22)

rotational velocity (5, €2y, Q) relative to an ex-
ternal coordinate system fixed with respect to the
camera. A texture element P in the scene with
instantaneous coordinates (X, Y, 7) will create an
optical flow vector (u®, v°) where u® and v® are the
horizontal and vertical instantaneous velocities

u = Qery — Qy(1+2%) + Qy —
v¢ = Qu(14+y*) — Quzy — Qz —

(T, —T,x)/ 7
(Ty — T-y)/ £20)

Here, (z,y) are the image coordinates of (X, Y, 7)
relative to a coordinate system in which the posi-
tive 7 is aligned with the line of sight of the camera
(see Figure 12).

KP: INSERT FIGURE 12 HERE

Consider an image region R that corresponds to
a stationary object represented by a set of points
pi, i = 1,..., M and instantaneous optical flow vec-
tors (u®,v°). Assume that the object points are
approximately at a constant distance from the
camera, Zg. In this case it is well known that the
flow measured over the region R can be modeled
by an eight parameter model,

= ap+ a1x+ ay + aga” + arry
= as+ asx + asy + agry + ary’(21)

=
Vo
&

|

<
m
—_
=
<
|

ag = —y — T/ 70
ay =1 /%

as =,

az =, — Ty/Zo

6.2. A Composite Model for Object and Camera
Motion

Expanding Equation (19) using a Taylor series ap-
proximation (assuming smooth spatial and tem-
poral intensity variations) and dropping terms re-
sults in

0="4(z,y,t Zu Z N+ Iy (2, y,t)(
v°(J Z

ji=1 =

w

N+ s, y,t)  s=1,...,1(23)

The time-generalized error is given by

D DI B

s=1(z,y)ER
SO+ I e (D )+
sl y(z,y, 1), 0dR4)

j=1 ji=1
Substituting the object motion model from
Equation (8) into Equation (23) results in

n 3 q
=2 IR D emUn +
s=1 (x,y)ER j=1lm=1
s n+s q

Zuc(j), Z Z emUm j +

j=1 j=n+1m=1
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Table 1.

Estimation strategies for composite object and camera motions

|| [Learned Models of Object Motion |General Models of Object Motion ||

|| Learned Models of Camera Motion | Future work

| Limited to simple object motions ||

|| General Models of Camera Motion | Developed in this paper

| Underconstrained | |

s
ji=1

where [ ]7 is the transpose of the temporal-flow
vector. Notice that the summation of the linear
combination includes only the s values of v and v.
Equation (25) essentially describes how the im-
age motion of a point (#, y) changes over time un-
der the constraint of a temporal-flow basis-set and
general camera motions.

Using the spatially parameterized flow model of
planar motion (see Section 4), Equation (25) can
be rewritten as

s

Z Yo XD PO

s=1 (x y)ER j:l

(D7) + sI*, o {R6)

5

ERED%

ji=1

where R denotes the region over which the planar
motion model is applied. P(s), s = 1,...,n, can
be represented by a linear combination of basis
vectors in a manner similar to the temporal-flow
representation developed in Section 4. Therefore,

s q

=Y > AllI)X

ST + sl ages)

[ZZCiLi’j’

Computation Algorithm

Object and camera motions can be uniquely de-
composed based on Equation (27) only when the
spatio-temporal motion trajectories of the cam-
era and object are separable (i.e., the trajectories
of the motion models are linearly independent).
First 1t 1s worth exploring how well we can recover
the coefficients from the sum of the flows. Let us
consider the simplified case of a single basis vec-
tor O that represents the object motion (this is
a 1 x 8 xn for the case of a single planar region
in motion). Let 66 denote the actual flow of the
region due to independent motion, and let C be
the unknown camera motion. Consider the prob-
lem of estimating the coefficient « that reflects
the amount of independent motion in the image
sequence that has a combined motion 66 + C.
Estimation of o can be posed as minimizing,

E = |[a0 — (30 + O)|I” (28)
The solution to Equation (28) is given by
1€ cos(y)
a=p+ ——= (29)
101

where v is the angle between C and O. Recall
that the eigenvectors O are orthonormal, there-
fore ||O|| = 1. Equation (29) simply states that
we can recover « with an error equal to the pro-
jected component of the camera motion onto the

s=1 (x,y)ER j=1li=1 -
Thds g s object motion (the term ||C]| cos(y)). This may
Z Z eiLi 1T+ [Z u’(j) look discouraging since C and O will typically not
=Tn+1i=1 =1 be orthogonal. However, the incorporation of a
s robust error norm instead of least squares allows
v ()] + 5%y, o270s to relax the orthogonality requirement. Specif-
j=1 ically, consider a robust formulation of Equation

Equation (27) measures the brightness motion tra-
Jjectories assuming a composition of familiar object
motion and general camera motion.

(28) as follows

Z (a0 — (80; +Cj),0.)  (30)
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Furthermore, consider the two components of C_",
cL orthogonal to O and C| parallel to 0. Con-
sider the first case in which the majority (in a
robust estimation sense) of points in the vector C
belong to CL. In this case, the estimate of « is
accurate since the majority of the points in C are
orthogonal to O. As a by-product, the Cl can be
determined from «. In the second case the “ma-
jority” of points in the vector c belong to C_"”; n
this case the recovered « is the summation of two
linearly dependent motions and therefore the mo-
tions are inseparable. Since robust estimators are
able to overcome about 35% of the points being
outliers, we can tolerate linear-dependence of up
to 35% of the points and expect accurate recovery.

Minimizing Equation (27) can either be done si-
multaneously for all parameters (i.e., ¢1, ..., ¢; and
ag, ...,ar) or, alternatively, computing ci, ..., ¢,
first, then warping the image sequence accord-
ingly before computing ag, ..., a7. Since the cam-
era model may be able, in some cases of planar
objects, to account for object motion with the
“assistance” of the robust error norm (e.g., a pla-
nar region moving with low acceleration) we chose
a modified version of the latter alternative. The
bias of the algorithm towards accounting for ob-
ject motion is motivated by our assumption that
the human motion is more “constrained” than the
camera motion and therefore it provides a better
starting point for the minimization.

The minimization is initially started at the
coarsest level of the pyramid without a camera
motion model so that a linear combination of tra-
jectories (in the multi-dimensional space of basis
flow vectors) relative to the learned object motion
is recovered. Then, the residual image motion in
the sequence (after compensating for object mo-
tion by spatio-temporally warping the image re-
gions throughout the sequence) is fit with the gen-
eral camera model by minimizing the residual er-
ror. At subsequently finer levels of the pyramid,
a refinement of these estimates is carried out sim-
ilarly, after spatio-temporal warping based on the
estimates from the coarse level, by first accounting
for object motion and then camera-motion.

The computation of the motions for a set of
frames If, I't! .. I'™™ consists of the following
stages of computation

1. Compute the amount of motion that can be
associated with the object given an activity
and the temporal stage of performance of the
activity. This is done according to the esti-
mation process described in Section 4. As a

result, a coeflicient vector & = ¢, ..., ¢4 is re-
covered.

2. Use the estimate ¢* to warp the sequence
to “remove” object movement.  This is

a spatio-temporal warp that registers the
frames I'+1 . T't" relative to I'. This warp-
ing leaves out a residual motion that is due to
camera motion.

3. Compute the camera motion model param-
eters ap,...,a7 from the warped sequence of
stage (2). The computation follows the multi-
temporal parameteric motion estimation in
(Yacoob and Davis, 1999).

4. Warp the sequence of (1) using the combined
estimated object and camera motions repre-
sented by the parameters ¢* and ag, ..., ar.

5. Repeat steps (1)-(4) using a coarse-to-fine
pyramid estimation process.

The error minimization steps for the object and
camera motion parameters in stages (1) and (3)
employ the Graduated-non-Convexity and a gra-
dient descent (simultaneous-over-relaxation) algo-
rithm as described in Section 4.

7. Experiments

In this section we report on several experiments
carried out to demonstrate the approach. Com-
posite motion of both rigid and articulated objects
are presented. The object motions will be mod-
eled using parameterized motion models such as
the planar model discussed earlier.

Figure 13 illustrates the interpretation of the
image motion captured by the first six parame-
ters of the parameterized planar model used to
approximate flow. The translation in the horizon-
tal and vertical directions is captured by ag and ag
respectively, while the divergence, deformation
and curl are captured by the following equations
(see Figure 13)

divergence = aj +as = (Uy + Vy)a
curl = —as +as = —(Uy — V),

deformation = a1 — a5 = (Uy — V})
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7.1.  Rigid Motion

We demonstrate composite motion estimation on
the falling book using the model developed in Sec-
tion 5. Figure 14 shows the results of composite
motion estimation of a book fall while the camera
is translating to the right. The bottom left graph
shows the recovered horizontal velocities of the
book and camera. As expected, the book falling
leads to zero horizontal speed, while the camera
moves at a constant speed of about 1.4 pixels per
frame. The bottom right graph shows that the
camera’s vertical motion is very close to zero while
the book’s speed increases linearly due to gravity.
Towards the end of the sequence the accumulation
of errors decreases the accuracy of our estimates.

Figure 15 shows the results of composite mo-
tion estimation of the book’s fall while the camera
initially rotates clockwise then counter-clockwise
about an axis off its center. The bottom left
graph shows the recovered horizontal velocities of
the book and camera. As expected the falling
book has zero horizontal speed, while the cam-
era starts with a movement rightward then left-
ward. The vertical speed of the book 1s only partly
correct. The increase in speed up-to frame 2380
corresponds correctly to the falling model; then,
for a few tens of frames, the velocity decreases
as the camera’s motion successfully accounts for
the missing book falling component. This occurs
since the book appears to fall horizontally at that
stage of camera rotation, and therefore is not well
described by the basis flow that represents verti-
cal motion. This corresponds to the case of lack
of majority of points belonging to the orthogonal
component of the motion as discussed in Section
6.3. As the camera reverses its rotation (around
frame 2400), the estimation recovers from this am-
biguous state. The bottom right graph shows the
recovered image rotation (curl) of the object and
camera. As expected, the book does not rotate
and the camera rotates clockwise then counter
clockwise at about frame 2400.

Figure 16 shows the results of simultaneous mo-
tion estimation for another book fall in which the
camera is moving away from the book. The graphs
in the third row show the recovered horizontal and

vertical velocities of the book and camera. The
book velocities are close to what is expected while
the camera has some horizontal velocity compo-
nent. The bottom row graphs are for the diver-
gence and deformation components. Clearly the
book is shrinking in size at a linear rate (then
accelerated rate) as the negative divergence indi-
cates. Moreover, since the falling book is rotating
slightly away from the camera, there is a mea-
sureable deformation in the horizontal direction
(positive deformation).

KP: INSERT FIGURE 14 HERE
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7.2.  Articulated Human Motion

We employ the basis vectors computed in Section
5.2 with new sequences involving camera motion.
Figure 17 shows the results of composite motion
estimation for a new instance of walking of a sub-
ject using only the first basis-vector of the spatio-
temporal flow; the camera is translating vertically.
The bottom row shows the horizontal, vertical
translations and the curl of the five body parts
and the camera. As recovered, the camera has
zero horizontal velocity and an initial downward
vertical translation due to upward camera motion
(frames 2045-2090) after which the opposite oc-
curs. No camera rotation was measured. Notice
the close similarity between the measurement of
the five body parts relative to the graphs in Fig-
ure 3. Figure 18 shows the results of composite
motion estimation for a new instance of walking
of a subject; here, the camera is rotating clockwise
around an axis off its center. Since the rotation
angles are small they are often confused with hor-
izontal and vertical translations. Otherwise, the
performance is similar to that shown in Figure 17.

Figure 19 shows the results of composite mo-
tion estimation for a new instance of walking of
a subject; here, the camera is rotating clockwise
around an axis off its center.

KP: INSERT FIGURE 17 HERE
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8. Discussion

We presented a new approach for image motion
estimation from multiple frames that uses learned
models of spatio-temporal flow. Demonstration of
the performance of the algorithm on both rigid
and articulated motions was provided. An activ-
ity learned from one specific viewpoint was used to
estimate the motion of a different subject perform-
ing the same activity from a similar viewpoint.
Also, it was demonstrated that tracking of the
occluded body parts is possible when a temporal
model of one side of the body has been learned.

Learning plays a critical role in the accuracy
of flow estimation. In our experiments on articu-
lated motion, we observed that the inaccuracies
of the cardboard model from (Ju et al., 1996)
used to generate the training set for the learn-
ing algorithm lead to similar inaccuracies in the
spatio-temporal flow estimation. The tracking of
the foot has been particularly problematic since in
most image sequences it occupies a region of only
about 30-100 pixels.

The learning of spatio-temporal flow models of
activities was performed independently for each
activity considered (e.g., a separate model for
each of walking, marching etc.). Subsequent body
motion tracking would simultaneously employ all
models to estimate the image motion, with the
“best” model selected. It remains an open prob-
lem to develop a single representation for all ac-
tivities so that a single processing of the data be
sufficient

The spatio-temporal flow estimation performs
successfully even when the motions of some parts
do not conform to the model, as long as a the
majority of parts do conform. For example, in the
case of walking, overall tracking is not disrupted if
the arm is not moving in a manner consistent with
its motion during the learning stage. Of course,
the arm tracking fails, but the overall body track-
ing remains accurate. The current strong coupling
between motions of body parts will be relaxed in
future research to allow weaker motion couplings
for certain parts.

Our current temporal-models are “strict” in
their interpretation of the time axis. In articulated
motion, we assumed that the learned models and
subsequent observations progress on an equal time

scale; 1.e., each time increment in the tracking
leads to an equal increment in the model. This as-
sumption is limiting since activity instances might
have a significantly different “pace.” In recent
work (Yacoob and Black, 1998) we proposed an
approach for analytically accounting for tempo-
ral variations in performance of movements. This
approach explicitly computes a time-scaling pa-
rameter that can directly be used in the current
spatio-temporal measurement model.

The approach for decomposing camera and ob-
ject image motions is a departure from current
research on multiple motion estimation. The fol-
lowing briefly summarizes the differences:

¢ Multiple motions have been generally consid-
ered as motions occurring in non-overlapping
regions. Qur approach considers two motion
sources (object and camera) within a single re-
gion. In other words, multiple motion compu-
tation is posed as a spatial segmentation prob-
lem (Boult and Brown, 1991, Costeira and
Kanade, 1995), composite object and cam-
era motion is a spatio-temporal decomposi-
tion problem.

¢ Image motion decomposition is pursued in a
direct manner without employing secondary
motion clues. Specifically, progressive solu-
tion by first estimating camera motion (e.g.,
as the dominant motion (Tian and Shah,
1997)) and then object motion is replaced by
direct association of image motion in the ob-
ject region to object typical-motion trajecto-
ries and camera model.

¢ The hypothesis of pre-learned object-typical
motions is proposed as a means to separate
the sources of image motion. The problem is
transformed into finding the motion parame-
ters in the subspace of object motions and the
motion parameters of the camera.

The separability of camera and object motions
is most challenging when these motions are lin-
early dependent in a subspace R¥ of R?™. Qur ro-
bust formulation of the error minimization leads
to the observation that we can recover the cor-
rect components as long as the orthogonal sub-
space (i.e., R*~") is the “majority” component
(in a robust estimation sense). The reason is that
the orthogonal component can be recovered and
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will 1tself determine determine the linearly depen-
dent components by the implicit exploitation of
their couplings through the basis vectors. In cases
where the linearly dependent subspace is too large,
recovery is not possible using our current formu-
lation.
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Notes

1. The distance and viewing direction in the training data
was constant. The viewing direction was approximately
fronto-parallel.

2. A constant acceleration model can easily be substituted,
see (Yacoob and Davis, 1999).
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Fig. 1. Four frames of a falling book tracked by a spatio-temporal flow model (top rows), the horizontal and vertical veloc-
ities components of the learned basis-vector (third row) and the recovered expansion coefficient throughtout the sequence

(bottom row).
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Fig. 2. A sequence of falling box (top row), the tracked box (middle row) and the recovered spatio-temporal flow coefficient
throughout the sequence (solid line) and for comparison the spatio-temporal flow coefficient for the falling book (dashed
line).



Learned Models for Estimation of Rigid and Articulated Human Motion from Stationary or Moving Camera

(1160)

(1145)

(1115)

y tgﬁjq .
(1220) (1205) (1190)

001

&

Horizontal Translation
&

004

0 20 40 60 80 100
frame number

80 100 120 140 160 180
frame number

curl

20 40 60 80 100 120 140 160
frame number

ao(s)

Fig. 3. A few frames from a long image sequence of a subject walking with the cardboard tracking (Ju et al., 1996). The
computed horizontal, vertical and image rotation of the five body parts as modeled by the first spatio-t emporal basis vector

of walking.
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Fig. 4. Percentage of outlier points in the matching of image change to the basis set of walking for the person shown in

Figure 5.
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Fig. 5. A few frames from a long image sequence of a subject walking with the spatio-temporal flow tracking of a new

subject’s walk and the recovered coefficient.
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Fig. 6. A few frames from a long image sequence of a subject walking with the temporal-flow tracking of a new subject’s
walk employing one, two and three basis vectors (top to bottom).
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Fig. 7. A few frames from a long image sequence of a subject walking as seen from a different viewing direction with the
computed spatio-temporal flow tracking.
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Fig. 8. A few frames from a long image sequence of a subject walking with the computed spatio-temporal flow tracking.
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Fig. 9. A few frames fron a long image sequence of a subject walking with the spatio-temporal flow tracking of a new
subject’s walk for both the visible and occluded parts and the recovered coefficient.
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Fig. 10. A few frames from a long image sequence of a subject marching with the spatio-temporal flow tracking of a
subject’s marching for both the visible and occluded parts.
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Fig. 11. A few frames from a long image sequence of a subject walking with the spatio-temporal flow tracking of a new
subject’s walk for both the visible and occluded parts and the recovered coefficient.
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Fig. 12. The motion and geometry of the camera.

Deformation

Divergence

Fig. 13. The figure illustrates the motion captured by the various parameters used to represent the motion of the regions.
The solid lines indicate the deformed image region and the “—” and “4” indicate the sign of the quantity.
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Fig. 14. A few frames from a long image sequence of a book falling while the camera is moving horizontally and the tracked
book region (top and middle rows). The horizontal and vertical translations of the book and the camera are shown in the

bottom row.
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Fig. 15. A few frames from a long image sequence of a book falling while the camera is rotating clockwise and the tracked
book region (top and middle rows). The horizontal and vertical translations and the rotation of the book and the camera

are shown in the bottom row, left to right,respectively.
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Fig. 16. A few frames from a long image sequence of a book falling while the camera is moving away in depth and the
tracked book region (top and second rows). The horizontal and vertical translations (third row) and the deformation and
divergence parameters of the book and the camera are shown in the bottom row.
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Fig. 17. A few frames from a long image sequence of a subject walking with vertical camera translation and the temporal-

flow tracking of a new subject’s walk and the recovered parameters for the parts and camera. The computed horizontal,

vertical and image rotation of the five body parts and for the camera.
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Fig. 18. A few frames from a long image sequence of a subject walking with camera rotation and the temporal-flow tracking
of a new subject’s walk and the recovered parameters for the parts and camera. The computed horizontal, vertical and
image rotation of the five body parts, and for the camera.
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Fig. 19. A few frames from a long image sequence of a subject walking with the spatio-temporal flow tracking of a subject’s

walk with camera rotation and the recovered parameters.
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