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ow models from exemplar image sequences. The temporal-
ow models are represented as a set oforthogonal temporal-
ow bases that are learned using principal component analysis of instantaneous 
owmeasurements. Spatial constraints on the temporal-
ow are then incorporated to model the movementof regions of rigid or articulated objects. These spatio-temporal 
ow models are subsequently used asthe basis for simultaneous measurement and tracking of brightness motion in image sequences. Thenwe address the problem of estimating composite independent object and camera image motions. Weemploy the spatio-temporal 
ow models learned through observing typical movements of the object froma stationary camera to decompose image motion into independent object and camera motions. Theperformance of the algorithms is demonstrated on several long image sequences of rigid and articulatedbodies in motion.keywords: Tracking, Optical Flow, Camera Motion, Non-rigid Motion, Motion Learning.1. IntroductionTracking the motion of a human body in actionis an exceptionally challenging computer visionproblem. Even ignoring the �ne structure of thehands, a human body is composed of fourteen ba-sic parts, several of which can move in quite in-dependent ways. Natural human motions, suchas walking, kicking, etc., are, of course, very con-strained by factors including motion symmetries,static and dynamic balance requirements, gravity,etc. A physics-based approach to analysis of hu-man motion might involve locating and trackingthe limbs and extremities of the body under con-trol of a mechanism that optimizes the tracking
with respect to known physical constraints. Thisturns out to be a rather daunting enterprise, dueto the di�culties of identifying body parts in nat-ural video imagery and the challenges of develop-ing e�cient computational methods for modelingand enforcing such physical constraints. Particu-larly, monocular viewing and clothing present sig-ni�cant challenges to a 3D physically-based ap-proach. In the rest of this paper, we consider analternative 2D approach to modeling and measur-ing human motion.While appearance-based (intensity) representa-tions have been demonstrated for modeling andrecognition of faces and textured 3-D objects(Murase and Nayar, 1995, Turk and Pentland,



2 Yacoob and Davis1991), this approach does not lend itself directly tothe diverse and unconstrained appearance of hu-mans in motion sequences. The main challenges toappearance-based methods are viewpoint depen-dence, dealing with appearance variability (due tochanges in clothing, shadowing, body size and pro-portions between individuals), self-occlusion, etc.An alternative approach is to develop appearance-based models for the 
ow trajectories of humans(called motion appearances), and to use thesemodels to constrain the measurement and track-ing of human motion.In this paper we show how low-dimensionalmotion appearance models of articulated humanmovement can be reconstructed from observationsof exemplar movements and how these models canbe used to measure and track other humans per-forming similar movements. We present experi-mental evidence that suggests that the number ofviewpoint-dependent motion appearance modelsthat one would need to model a given movementis not too large (see also the discussion in (Ya-coob and Black, 1998)), and also show how thesemodels can be employed when there is partial/fullocclusion of some of the body parts (speci�cally,we demonstrate an ability to track both legs inmotion from viewpoints in which one leg occludespart of the other).The motion appearance models are created byapplying a standard principal components analy-sis to time sequences of parametric models of bodypart motion. These motion parameters of the ex-emplar movement observations are obtained usingthe \cardboard" body model introduced in (Ju etal., 1996), which employs the simple constraintthat the instantaneous motion of body parts mustagree at the joints where those parts meet. Theselearned motion models are then used in a spatio-temporally constrained image-motion formulationfor simultaneous estimation of several rigid andnon-rigid motions. Much of the analysis is carriedout in a multi-temporal optical 
ow framework de-scribed in (Yacoob and Davis, 1999), which is cru-cial for analyzing time-varying images of humanssince the instantaneous motions of body parts canspan a broad spectrum of magnitudes, from sub-pixel to many pixels per frame.The measurement of human motion is furthercomplicated when the camera itself in motion. In

this case, the motion measured at each point onthe human body is composed of two independentsources, body-part motion and camera motion.The aim is to recover human motion relative tothe static environment after compensating for theestimated motion of the camera.Although it may be possible, in principal, tocompute camera motion �rst and then factor itout during object motion estimation (e.g., see arelated example (Tian and Shah, 1997)), a recov-ery of the structure of both the scene and theobject are necessary to decompose the 
ow overthe object region into the object and camera mo-tion components (this was not dealt with in (Tianand Shah, 1997)). This structure recovery is itselfa very challenging problem due to the e�ectiveinstantaneous change of scene structure as a re-sult of the composite motion. Furthermore, suchtechniques generally depend on the availability ofa \rigid" background for camera motion estima-tion. However, humans are able to recognize typ-ical human movements from a moving platformeven when no such rigid background is available-i.e., in situations where the motion of every pixelis a combination of camera and independent mo-tion. Therefore we seek to determine conditionsunder which the object and camera image motioncan be separated.The simultaneous occurrence of object and ego-motion is typical for the human visual system. Inmany routine activities, humans easily identify in-dependently moving objects and analyze their mo-tions while they themselves are in motion (for ex-ample, all ball games involve some type of human-object interaction during simultaneous indepen-dent motion). Also, human interactions oftenoccur during simultaneous motion; e.g., normalwalking in a crowd involves estimating indepen-dent human motion; in dance, composite motionestimation is critical to performance.Composite object and self motion can be re-solved by the human visual system equally in atextured or textureless static environments (e.g.,ball catching indoors or in open-air while lookingupward). This motivates us to explore the esti-mation of composite motion based only on the ob-served motion of object regions alone, disregard-ing the (possibly unavailable) motion �eld due tothe static environment.



Learned Models for Estimation of Rigid and Articulated HumanMotion fromStationary or Moving Camera 3We note that certain object or camera motionsmay lead to unresolvable ambiguities in compositemotion estimates. For example, when one views avehicle from a second moving vehicle (disregard-ing the static environment cues) it is ambiguouswhether the observed vehicle is moving and inwhat direction or with what speed (i.e., the wellknown \train motion illusion").Based on these observations we will propose amodel-based approach for estimating the compos-ite 2D motion of object and camera. We willdemonstrate the performance of the approach onrigid and articulated bodies in motion. We makethe following simplifying assumptions,1. The independently moving object is observed\o�-line" from a stationary camera while itperforms its typical movements. This allowsus to construct a representation of these typesof movements (Yacoob and Davis, 1998).2. A 2D image motion estimation framework isused to describe both the object and the cam-era motions. As a result, the motion trajec-tory model of the object is view-point depen-dent. Therefore, only camera motions that donot \signi�cantly" alter the appearance of theindependent object motion can be recovered(e.g., if the object is free falling, the cameracannot rotate by 90 degrees so that the ob-ject appears to move horizontally). This willbe made more precise in the body of the pa-per.3. The image region corresponding to the in-dependently moving object is identi�ed inthe �rst frame of the image sequence, per-haps by algorithms such as (Fejes and Davis,1998, Fermuller and Aloimonos, 1995, Iraniand Anandan, 1996). This region will be thebasis for estimation of the simultaneous mo-tion of the object and camera.In Section 2 we discuss related research. Sec-tion 3 develops the learning and measurement oftemporal models for image motion. In Section 4we develop the spatio-temporal 
ow equations forparameterized regions. In Section 5 an illustrationof the modeling and estimation of spatio-temporal
ow for rigid and articulated motions is shown.Section 6 develops the modeling and measurementof composite motions. In Section 7 several exam-

ples for composite motion estimation are shownfor rigid and articulated motions. Finally, Section8 summarizes the paper and discusses some openproblems.2. Relevant Research2.1. Human motion measurement from a sta-tionary cameraApproaches to tracking the movement of humanshave focused on detecting and tracking the bodysilhouette edges of the �gure in the images to avoidthe interference of the non-rigid motion of cloth-ing. Gavrila and Davis (Gavrila and Davis, 1996)proposed a model-based approach for tracking andrecovering the 3D body structure from image se-quences taken from multiple cameras. The ren-dering of the edges of the 3D body model arematched to the edge images in each camera ateach time instant to recover the degrees of freedomof each body part using an elaborate parametersearch procedure. A somewhat similar approachinvolving a single camera has been proposed by(Goncalves et al., 1995), where a Kalman �lterwas used to estimate a reduced set of the degreesof freedom of a moving arm from a set of pointssampled from the image based on rendering the 3Darm structure (thus, requiring prior knowledge ofseven parameters of the arm). Yamamoto et al.(Yamamoto et al., 1998) proposed an approachthat tracks a 3D model of a human body as seenfrom multiple cameras. A 3D model is initializedover the regions of calibrated cameras. Then, a di-rect estimation of motion parameters of 12 artic-ulated parts of the body is performed. Baumbergand Hogg (Baumberg and Hogg, 1994) proposedan approach for tracking the outline of a movingbody using an active shape model. Modal-based
exible shape models were used to capture theconsiderable outline variations in the human sil-houette during movement. Rohr (Rohr, 1994) de-scribed a model-based approach for tracking andrecognizing human movement from a single cam-era. Several movement states of human �gurespre-captured as straight line images were used tobest-�t the area of detected change in the imagesequence by maximizing a similarity measure.



4 Yacoob and DavisPentland and Horowitz (Pentland and Horowitz,1991)describe the �tting of a 3D physically-based ar-ticulated model to optical 
ow data. Parts of aperson are described as superquadrics with con-straints on the articulated motion of the parts.In contrast to these approaches which requirevarious 3D models of the body, Ju et al. (Ju et al.,1996) proposed an approach for tracking humansin motion assuming that a person can be repre-sented by a set of connected planar patches. Totrack this articulated motion, recovery of the rel-ative motion of each of the limbs was performediteratively. This is done by �rst estimating themotion of the torso and removing it from the im-age sequence using warping. The relative motionsof the thighs, upper arms, and head can be thenestimated relative to the torso-stabilized images.Finally, the image sequence can be stabilized withrespect to these regions and the relative motions ofthe calf and lower arm regions can be estimated.Furthermore, the planar model is augmented tomodel articulated motion by constraining the mo-tion of connected patches to be the same at thepoint of articulation.Bregler and Malik (Bregler and Malik, 1998)recently proposed a 3-D approach for tracking hu-man parts using a kinematic chain model. Eachpart motion is represented by a six-parametermodel that encodes the relative scale and twistmotion between consecutive frames (where twistmotion represents the parts motion as a rotationaround a 3D axis and a translation along thisaxis). The representation is linearized assumingan orthographic projection.Most existing work on human motion trackingassumes that the region of the human �gure hasbeen initially detected and the body part regionslocalized. However, this remains a challenginggoal despite some encouraging results reported in(Haritaoglu et al.,1998). Upon detection of humansilhouettes (using foreground/background detec-tion), Haritaoglu et al. (Haritaoglu et al.,1998)used a rule-based system to label the human bodyparts allowing for occurrence of four canonicalpostures.

2.2. Human motion estimation from a movingcameraIn recent years there has been increased inter-est in independent object motion detection andtracking. The detection of independently movingobjects has generally been posed as the problemof detecting regions in the image that are mov-ing non-rigidly (see (Fejes and Davis, 1998, Fer-muller and Aloimonos, 1995, Irani and Anandan,1996, Tian and Shah, 1997)). Qualitative (Fejesand Davis, 1998, Fermuller and Aloimonos, 1995)and quantitative (Irani and Anandan, 1996, Tianand Shah, 1997) information derived from the im-age 
ow �eld is used to infer camera motion andto segment the image into independently movingpatches. In (Irani and Anandan, 1996, MacLeanet al., 1994, Tian and Shah, 1997), assumptionson the structure of the scene (Irani and Anan-dan, 1996) and camera motion (MacLean et al.,1994, Tian and Shah, 1997) were employed to seg-ment the image into stationary and moving ob-ject regions. A limitation of these approaches istheir assumption that the image motion is pre-dominantly rigid, and that moving objects occupya relatively small region in the image.Some related work on detection and estima-tion of multiple motions have been reported forthe 3D case (Boult and Brown, 1991, Costeiraand Kanade, 1995, Tian and Shah, 1997) (cameramotion was involved in (Tian and Shah, 1997),while a stationary camera was used in (Boult andBrown, 1991, Costeira and Kanade, 1995)). Dis-placements of sparse features were used to seg-ment point motions (Boult and Brown, 1991, Tianand Shah, 1997) or recover di�erent structures(Costeira and Kanade, 1995) that re
ect motionsin non-overlapping regions. In these approachesan orthographic projection was assumed. Al-though demonstration of performance for two in-dependent motions of rigid objects was shown(Costeira and Kanade, 1995), it is not clear thatthese algorithms remain e�ective when a largercollection of independently moving objects arepresent in the scene such as in the case of humanmotion in front of a moving camera. The compos-ite camera and object motion estimation problemdi�ers from these multiple motion problems be-cause of the confounding of camera and objectmotion over the object region. A motion decom-



Learned Models for Estimation of Rigid and Articulated HumanMotion fromStationary or Moving Camera 5position is needed here in contrast to a spatialsegmentation (Boult and Brown, 1991, Costeiraand Kanade, 1995, Tian and Shah, 1997).3. A Temporal Model for Image MotionIn this section we extend the traditionally instan-taneous formulation of image motion in the timedimension. As a result, the motion vector (u; v)of a point (x; y) is extended in time by de�ning amotion trajectory, (u(s); v(s)) (s = 1; :::; n) where(u(s); v(s)) is the image motion of point (x; y) be-tween time instants s � 1 and s. This expansionof a point in 2D to a trajectory increases the di-mensionality from R2 to R3 since the trajectoryis equivalent to a set of points (s; u(s); v(s)) in(s; u; v) space.In the following we employ two temporal vari-ables s and t. The global time t denotes time rela-tive to the beginning of the image sequence whiles denotes time relative to the time instant t. LetI(x; y; t) be the image brightness at a point (x; y)at time t. The brightness constancy assumptionof this point at a subsequent time s; 1 � s � n, isgiven byI(x; y; t) = I(x + sXj=1 u(j); y + sXj=1 v(j); t + s)8s; s = 1; :::; n (1)where (u(s); v(s)) is the horizontal and verticalinstantaneous image velocity of the point (x; y)between frames (t + s � 1) and (t + s) and[Psj=1 u(j);Psj=1 v(j)] is the cumulative imagemotion in the horizontal and vertical directionsbetween time instant t and t + s. The specialcases where (u(s); v(s)) are constant or satisfy aconstant acceleration model relative to t were con-sidered in (Yacoob and Davis, 1999):u(s) = b0 + b1sv(s) = b2 + b3s(b0; b1; b2; b3 are the constant and linear order pa-rameters of the model). Let the range of timeover which temporal-
ow (sequences of instanta-neous 
ow) is estimated be s = 1; ::; n. ExpandingEquation (1) using a Taylor series approximation(assuming smooth spatial and temporal intensity

variations) and dropping terms results in0 = Isx(x; y; t) sXj=1 u(j) + Isy(x; y; t) sXj=1 v(j) +sIst(x; y; t) 8s; s = 1; :::; n(2)where Is is the s-th frame (forward in time rel-ative to I) of the sequence, and Isx; Isy and Istare the spatial and temporal derivatives of imageIs relative to I. It is important to limit the rangeof s so that the respective derivatives can be ac-curately computed. Clearly, if a large n is cho-sen so that large motions can occur between im-age I1 and In the di�erential representation doesnot hold. In the context of human motion we usea high frame rate camera (85 and 99 Hz) to re-duce the per frame motion to a couple of pixels,so that by using a pyramid estimation process wecan compute the derivatives for 3-5 frames at atime.Since Equation (2) is underconstrained forthe recovery of (u(s); v(s)), the estimation of(u(s); v(s)) can be ordinarily posed as an errorminimization over a small region R using a robusterror norm, �(x; �e), that is a function of a scaleparameter �e. The error of the 
ow over R is,E(u; v; s) = X(x;y)2R �(Isx(x; y; t) sXj=1 u(j) +Isy(x; y; t) sXj=1 v(j) + sIst(x; y; t); �e) (3)assuming points in R conform to the same motiontrajectory. We have n equations of the form ofEquation (3), one for each time instant. The time-generalized error is de�ned asED(u; v) = nXs=1 X(x;y)2R �(Isx(x; y; t) sXj=1u(j) +Isy(x; y; t) sXj=1 v(j) + sIst(x; y; t); �e)(4)4. Learned Parameteric Image MotionIn subsection 4.1 we show how the space of 
owtrajectories can be e�ciently encoded using a lin-ear representation so that a parametric model oftrajectories is created. Subsection 4.2 reformu-



6 Yacoob and Davislates the parametric model of trajectories to ex-ploit spatially parameterized optical 
ow models.Finally, in subsection 4.3 we describe the compu-tational aspect of the algorithm.4.1. Learning Temporal-Flow ModelsAs de�ned, motion trajectories (u(s); v(s)) (s =1; :::; n) require the computation of the trajectoryof a single point which involves estimating thevalue of 2n parameters. In reality, however, physi-cal processes constrain the space of actual motiontrajectories of points. Physical considerations in-clude static and dynamic properties of real objectmotions. Notice that these processes do not ap-ply at the instantaneous level since a point canmove with any velocity (u; v) and that the addi-tion of the temporal dimension implicitly intro-duces physical (e.g., Newtonian) constraints pro-jected onto the camera plane. In this subsectionwe propose an approach for learning a model ofthe space of feasible trajectories.Purely spatial constraints on image motionswere recently proposed by Black et al. (Black etal., 1997). There, a low dimensional representa-tion of the spatial distribution of image motionsin a region was learned and used in recovering mo-tion in image sequences. This spatial model pro-vides only an instantaneous constraint on 
ow. Incomparison, the temporal-
ow models describedhere express how 
ow changes over time at (forthe moment) a single point. In the subsequentsection we explain how our temporal-
ow modelcan be extended to include spatial constraints aswell.Temporal-
ow models are constructed by ap-plying principal component analysis to exemplar
ow sequences. So, the functions (u(s); v(s)) fors = 1:::n are approximated by a linear combina-tion of a temporal-
ow basis-set of 1�2�n vectors,Ui. The 
ow vector �e = [(u(s); v(s))]ns=1 can bereconstructed using�e = [e(j)]j=1;:::;2�n = [ qXi=1 ciUi;j]2nj=1 (5)where �e, the temporal-
ow vector, denotes theconcatenation of u(s) and v(s) and ci is the ex-pansion coe�cient of the Ui-th temporal-
ow ba-

sis vector and q is the number of vectors used asthe basis-set.The temporal-
ow basis-set is computed duringa learning stage in which examples of the speci�cimage-motions are subjected to principal compo-nent analysis. Speci�cally, let (ui(s); vi(s)) fors = 1; :::; n be the i�th instance (out of N in-stances) of an incremental 
ow series measured foran image point (x; y) at time instants s = 1; :::; n.The estimation of (ui(s); vi(s)) can be carried outeither using the multi-scale approach proposed in(Yacoob and Davis, 1999) or by direct two-frame
ow estimation technique.Let �ei be the vector obtained by concatenatingui(s) for s = 1; :::; n and vi(s) for s = 1; :::; n. Theset of vectors �ei can be arranged in a matrix Aof 2 � n rows by N columns. Matrix A can bedecomposed using Singular Value Decomposition(SVD) as A = U�V T (6)where U is an orthogonal matrix of the same sizeas A representing the principal component direc-tions in the training set. � is a diagonal ma-trix with singular values �1; �2; :::; �N sorted indecreasing order along the diagonal. The N � Nmatrix V T encodes the coe�cients to be used inexpanding each column of A in terms of principalcomponent directions. It is possible to approx-imate an instance of 
ow sequence �e using thelargest q singular values �1; �2; :::; �q, so that�e� = qXl=1 clUl (7)where �e� is the vector approximation, cl are scalarvalues that can be computed by taking the dotproduct of �e and the column Ul. In e�ect thisamounts to projecting the vector �e onto the sub-space de�ned by the q basis vectors. The pro-jection can also be viewed as a parameterizationof the vector �e in terms of the basis vectors Ul(l = 1::q) where the parameters are the cl's.Using the temporal-
ow basis set Equation (4)can also be expressed as:ED(u; v) = nXs=1 X(x;y)2R �([Isx Isy][ sXj=1 qXi=1 ciUi;j;n+sXj=n+1 qXi=1 ciUi;j ]T + sIst; �e) (8)



Learned Models for Estimation of Rigid and Articulated HumanMotion fromStationary or Moving Camera 7where [ ]T is the transpose of the temporal-
owvector. Notice that the summation of the linearcombination includes only the s values of u andv. Equation (8) essentially describes how imagemotion of a point (x; y) changes over time underthe constraint of a temporal-
ow basis-set.4.2. Parameterized Spatio-Temporal Image-MotionRecently, it has been demonstrated that spatiallyparameterized 
ow models are a powerful tool formodeling instantaneous image motion ((Black andYacoob, 1997, Black et al., 1997, Ju et al., 1996)).The temporal-
ow learning and estimation algo-rithms can be extended to spatially parameterizedmodels of image 
ow. In this section we describethe learned estimation of polynomially parameter-ized image motion models.Recall that the traditional 
ow constraint as-sumes constant 
ow over a small neighborhoodaround the point (x; y). Over larger neighbor-hoods, a more accurate model of the image 
ow isprovided by low-order polynomials (Adiv, 1985).For example, the planar motion model (Adiv,1985) is an approximation to the 
ow generatedby a plane moving in 3-D under perspective pro-jection. The model is given byU (x; y) = a0 + a1x+ a2y + a6x2 + a7xyV (x; y) = a3 + a4x+ a5y + a6xy + a7y2 (9)where ai's are constants and (U; V ) is the instan-taneous velocity vector. The a�ne model is thespecial case where a6 = a7 = 0 and generally holdswhen the region modeled is not too large or sub-ject to signi�cant perspective e�ects. Equation(9) can be written in matrix form as[UV ]T = XPT (10)whereX(x; y) = � 1 x y 0 0 0 x2 xy0 0 0 1 x y xy y2 � ;P = � a0 a1 a2 a3 a4 a5 a6 a7 �To exploit the economy of parameterized models,we re-formulate the temporal-
owmodels to learnthe temporal evolution of the generating parame-ters of the planar model as opposed to the 
owvalues. Speci�cally, consider the parameters ai tobe a function of s (similar to the 
ow formulation),

so thatP(s)=�a0(s) a1(s) a2(s) a3(s) a4(s) a5(s) a6(s) a7(s)�ns=1where P(s) is the image motion parameters com-puted between time instants s � 1 and s.Equation (8) can be rewritten asED(u; v) = nXs=1 X(x;y)2R �([IsxIsy]X[ sXj=1P(j)]T+sIst; �e)(11)where R denotes the region over which the planarmotion model is applied. Notice that the termPsj=1P(j) requires proper region registration be-tween time instants. P(s), s = 1; :::; n, can be rep-resented by a linear combination of basis vectorsin a manner similar to the temporal-
ow represen-tation developed earlier. Each basis vector, Li isa vector of size 8 � n since it generates the eightparameters for each time instant s. We can writeP(s), s = 1; :::; n, as the following sum�e = [e(j)]j=1;:::;8�n = [ qXi=1 ciLi;j]8nj=1 (12)where ci is the expansion coe�cient of the Litemporal-parameter basis vector. Equation (11)can now be rewritten asED(u; v) = nXs=1 X(x;y)2R �([IsxIsy]X[ sXj=1 qXi=1 ciLi;j; :::;7n+sXj=7n+1 qXi=1 ciLi;j]T + sIst; �e)(13)The minimization of Equation (13) results inestimates for the parameters ci. The above treat-ment of polynomial 
ow is also applicable to theorthogonal-basis modeling of spatial 
ow recentlyproposed in (Black et al., 1997). The coe�cientsused in the linear combination replace the param-eters ai in the above equations.4.3. Computation DetailsThe robust error norm and its derivative areadopted from (Geman and McClure, 1987),�(x; �e) = x2�e + x2  (x; �e) = 2x�e(�e + x2)2(14)



8 Yacoob and DavisThe minimization of Equation (13) is carriedout using a descent method, Simultaneous Over-Relaxation (SOR). The minimization of ED(u; v)with respect to ci is achieved using an iterativeupdate equation, so at step q + 1ci(q+1) = ci(q) � ! 1T (ci) @ED@ci (ci(q)) (15)where 0 < ! < 2 is an overrelaxation parameterwhich is used to overcorrect the estimate of ci(q+1)at stage q+1. The value of ! determines the rateof convergence. The term T (ci) is an upper boundon the second partial derivative of EDT (ci) � @2ED@2ci = 8nXj=1Li;j2maxj  0 (16)where Li;j2 is the square of element j of Li andmax 0 = maxx @2@x2�(x; �) = 2�2 (17)To achieve a globally optimal solution the ro-bust error norm � is started with a large enoughscale parameter �e to �nd a solution using theSOR technique. Then this process is iterativelyrepeated while decreasing �e and starting withthe last estimate. The choice of a large enough�e guarantees convexity of the error function atthe beginning of the process, which is followed bythe use of the Graduated Non-Convexity methoddeveloped in (Blake and Zisserman, 1987). The it-erated decrease in �e reduces the in
uence of theoutlier measurements and thereby re�nes the es-timates.This implementation employs the standard spa-tial coarse-to-�ne strategy (Bergen et al., 1992)that constructs a pyramid of the spatially �lteredand sub-sampled images and computes the coe�-cients initially at the coarsest level and then prop-agates the results to �ner levels.5. Experiments with Stationary Camera5.1. A Rigid Motion ExampleThe use of a temporally parameterized motionmodel that explicity accounts for image velocityand acceleration and is computed directly fromimage intensity variations was discussed in (Ya-

coob and Davis, 1999). Here, we demonstrate howa learned spatio-temporal 
ow model can captureimage acceleration by observing a book free-fallingin an image sequence.The learning of the temporal-
ow model is per-formed as follows,� The area corresponding to the book is man-ually segmented in the �rst frame in the se-quence.� The image motion parameters of this area areestimated for 40 frames assuming a planarmodel (
ow estimation is carried out betweenconsecutive images only using the parameter-ized 
ow algorithm of (Black and Anandan,1996)).� A basis set for the temporal-
ow parametersis computed by performing PCA on the fournon-overlapping groups of 10 consecutive in-stanteneous 
ow vectors.� The basis set is used to compute the coe�-cients using Equation (13) for the whole se-quence (100 frames).In this experiment the �rst eigenvalue captured99.9% of the variation among the 4 data-setsas one might expect for such a uniform motion.Therefore, a single eigenvector is used in the mo-tion estimation stage.KP: INSERT FIGURE 1 HEREFigure 1 shows the results of tracking the bookusing the spatio-temporal 
ow model. The graphsin the middle row show the value of a0(s) anda3(s) (for s = 1:::10) of the eigenvector used inestimation. While a0(s) is a nearly zero (corre-sponding to little horizontal motion), the verti-cal motion component a3(s) is linear with positiveslope that implicitly captures the constant accel-eration of the fall. The lower graph shows the es-timated coe�cient c0 throughout the long imagesequence. This coe�cient grows linearly, which iswhat one would expect since the motion is linearorder (i.e., a constant acceleration model).The learned spatio-temporal models can be ap-plied to other objects performing similar motions.The spatio-temporal 
ow basis-vector learned forthe book is used to estimate the falling of a di�er-ent object, a cardboard box. Figure 2 shows theimages, the tracking results and the coe�cient c0that is also recovered throughout the falling. No-



Learned Models for Estimation of Rigid and Articulated HumanMotion fromStationary or Moving Camera 9tice that despite the accurate translational track-ing some counterclockwise rotation is recovered.This is not surprising since the motion of the bookincluded a small rotational component, while thebox fell without rotation. The single basis vectorused encodes both the falling and rotation andtherefore these cannot be segregated during esti-mation.It is worth noting that the motion trajectory ofthe box creates a line parallel (see Figure 2 bottomrow) to the falling book's trajectory. Equation(13) minimizes the error within a subspace (of asingle basis vector, in this case) in which the linearcombinations of one line lead to parallel lines.KP: INSERT FIGURE 2 HERE5.2. Learned Models of Articulated Human Mo-tionThe cardboard (Ju et al., 1996) model for tracking�ve-part human movement (arm, torso, thigh, calfand foot) involves recovering 40 motion parame-ters per frame; this requires substantial computa-tion. Furthermore, due to the chain-like structureof the tracking, any error in the computation inan early part (in the chain structure) propagatesto the succeeding parts. Learning models of artic-ulated movement can lead to much simpler rep-resentations in which redundancies are removedand motion parameter couplings learned. A setof samples of the motion parameters of the partsof articulated human covering one entire periodof an activity are modeled using principal com-ponent analysis. In the following, we use videocameras with resolution 256 � 256 at 99Hz and686� 484 at 85Hz; this temporal sampling rate ishigh enough for us to e�ectively employ di�eren-tial 
ow estimation over several frames. In mostof the sequences used here the full human bodyis observed performing an activity; therefore, theimage support for each body part is usually lim-ited to a fairly small number of pixels.Similar to the accelerating book example, weassume initially that:� The body is manually segmented into �veparts in the �rst frame.� People are moving at a similar viewing angleto the camera during the modeling and mea-surement phases.

� A single activity, such as \walking," is learnedand tracked.Learning of the \walking" cycle spatio-temporal
ow model is performed by �rst employing thealgorithm of Ju et al. (Ju et al., 1996) to com-pute each region's instantaneous motion param-eters during the observed cycle of the activity.Then, the motion parameters of the activity cy-cles of several people are used to derive the basis-set of spatio-temporal 
ows of the activity. Itis worth noting that although the basis-vectorsare computed for a whole cycle of \walking" thespatio-temporal motion recovery is conducted us-ing a small computation temporal window (typi-cally 6-10 frames) that slides along the movement.The �ve parts are tracked using Equation (13), thebody parts are considered as a single object withindividual motion parameters for each part coor-dinated through the principal components model.KP: INSERT FIGURE 3 HEREFigure 3 displays a few frames of a walking se-quence from the training set of one subject withthe �ve-part body tracking as in (Ju et al., 1996).Notice that the tracking accumulates errors, someof which also appear in the spatio-temporal 
owtracking. In learning the model from ten peo-ple's gait1, the �rst basis vector accounts for about67% of the variations and re
ects very clearly the\walking" cycle. The next 4 basis vectors captureabout 23% of the variations and capture imaging,individual variations and some di�erences in im-age acquisition conditions.Applying this model to measure a human move-ment in a new sequence requires temporally \reg-istering" the model to the observation at the ini-tial time t0. Determining the temporal stage ofthe activity plays an important role since it de-termines the local temporal window in the basis-vectors which is employed in the error minimiza-tion. One simple method to determine the cor-rect stage is to match the initial frames againstall stages of the performance of the activity. Ateach matching instance the quality of the matchis measured as the ratio of the pixels explained bythe basis-vectors over the overall number of pixels.The best match is that in which brightness motioncan be best explained by the basis-vectors.To demonstrate the performance of the tempo-ral initialization we use the sequence shown in



10 Yacoob and DavisFigure 5 and match its frames against all tem-poral stages of \walking" as captured by the basisset. Figure 4 shows the percentage of outliers (i.e.,points not explained well by the basis vectors) asa function of the temporal stage of \walking." Inthis example the least number of outliers occurs inthe beginning of the sequence and after about 112frames which is the beginning of the next walkingcycle.KP: INSERT FIGURE 4 HEREFigure 5 shows the results of tracking a newinstance of walking of a subject using only the �rstbasis-vector of the spatio-temporal 
ow. It alsoshows the coe�cient, c0, recovered throughout thesequence (n = 8). Low image contrast leads toaccumulation of tracking errors. Figure 6 showsthe tracking results using the �rst one, two andthree basis vectors. A close look at the resultsreveals that the best tracking is achieved usingthe �rst two basis vectors. The third basis vectordegraded the performance since the informationcaptured by this vector is relatively small (about5%) and does not provide an e�ective constrainton the brightness.KP: INSERT FIGURE 5 HEREKP: INSERT FIGURE 6 HEREThe learned spatio-temporal 
ow models re-main e�ective in tracking articulated motion evenwhen distance from the camera and the viewpointvary from the training set. The variation in dis-tance introduces practical problems of optical 
owestimation since the model was learned for a \dis-tant" object from the camera, and the trackingis conducted at a closer distance; here, the non-rigid motion of clothing and stronger perspectivee�ects are visible. Varying the viewpoint poses amore fundamental problem since the appearanceof the activity changes as we move farther fromthe learned viewpoint. In the following �gures weprovide results in which the viewing angle is about20 degrees o� the fronto-parallel plane. In exper-iments, not shown here, in which the viewing an-gle was close to 45 degrees o� the fronto-parallelplane, we observed that the calf and foot are nottracked well while the torso and thigh trackingremained satisfactory. Moreover, the estimationprocess was observed to rely heavily on the cor-rectly tracked torso and thigh, while the otherparts were found to be nonconforming with re-

spect to the spatio-temporal 
ow model of walk-ing.Figures 7 and 8 show the tracking of walkingover a long sequence, where the distance and view-ing angle are di�erent from those used in learning.Also, in Figure 8, a subject not part of the trainingset is performing the activity. This example showstracking errors, especially at the body extremities,(note that most of these errors are due to learn-ing errors from the original data-for example theenlargement of the foot area).Learned spatio-temporal 
ow of activities canalso be employed for tracking partially occludedparts. We demonstrate the performance of ourapproach on sequences of two activities, walkingand marching. These activities involve symmtericmovement of the legs and arms that are half acycle apart. Therefore, once a motion model forthe visible parts is learned it can be applied tothe occluded ones. We assume that the di�erencein distance between the legs and the camera areequal to the distance of the body from the camera.In the �rst frame we initialize the regions for ninebody parts (when parts are occluded we simplyhypothesize their locations). Then, we minimizeEquation (13), where all nine regions are regardedas a single object with multiplemotion parametersthat are represented by the two-phase motion ofthe right and left side parts of the body. Only theun-occluded pixels of each region are used in themotion recovery while the occluded part is movedto re
ect the movement in the activity model.Each activity model was learned separately froma single example of its performance.The results of the tracking of the two activitiesin long sequences are shown in Figures 9-11. Thetwo legs are tracked well despite some inaccura-cies that are due to the learned model inaccura-cies. One important property of the models wepropose is that the recovered coe�cients readilyincorporate the interpretation of the activity seenin the image. In the case of multiple familiar ac-tivities we employ these models competitively to\account" for the brightness changes in the image.The model that best accounts for the brightnessmotion achieves the \recognition" of the observedactivity.KP: INSERT FIGURE 7 HEREKP: INSERT FIGURE 8 HEREKP: INSERT FIGURE 9 HERE



Learned Models for Estimation of Rigid and Articulated HumanMotion fromStationary or Moving Camera 11KP: INSERT FIGURE 10 HEREKP: INSERT FIGURE 11 HERE6. Modeling and Measuring CompositeMotionWe consider next observing human movementfrom a moving camera. First consider the sim-pler case of a single rigid object and the 
ow thatis observed due to the composite motion. LetP = (X;Y; Z) be an object point and p = (x; y)be its projection on the image plane of the cam-era. Object motion leads to 
ow (uo; vo) at p.The motion of p is also a�ected by camera selfmotion. Let the 
ow resulting from the cameramotion be (uc; vc); For the composite motion wehave a brightness constancyI(x; y; t) = I(x+uc+uo; y+ vc+ vo; t+1): (18)The estimation of uc; uo; vc and vo is undercon-strained (one equation with four variables) andan in�nite number of solutions exists unless con-straints on object and camera motions are given.Employing a neighborhood-region 
ow constancy,as is typically done, does not allow us to separatethe 
ow into its camera and object components.Let I(x; y; t); :::; I(x; y; t + n) be a sequence ofn + 1 images. The brightness constancy assump-tion for any time instant s; 1 � s � n, isI(x; y; t) = I(x + sXj=1 uo(j) + sXj=1 uc(j);y + sXj=1 vo(j) + sXj=1 vc(j); t+ s)8s; s = 1; :::; n (19)where[ sXj=1uo(j); sXj=1 vo(j)]; [ sXj=1 uc(j); sXj=1 vc(j)]are the cumulative image motion in the horizontaland vertical directions between time instant t andt+s for point p due to object and camera motions,respectively. The two, 2n long vectors constructedby concatenating the horizontal and vertical 
owsat each time instant 8j; j = 1; :::; n~O = [uo(j); vo(j)]nj=1 ; ~C = [uc(j); vc(j)]nj=1

will be referred to as the the motion temporal tra-jectories of point p due to object and camera mo-tions, respectively. The vectors ~C and ~O de�netwo points in R2n. Consider the separability ofthe sum ~C + ~O with respect to the angle betweenthe vectors as expressed by the normalized scalarproduct cos(
) = ~C�~Ojj~Cjj�jj~Ojj :� If cos(
) = 1 then the vectors are parallel andthere are in�nite decompositions of the suminto two vectors ~C and ~O. This occurs, forexample, in the case of the train motion illu-sion.� If cos(
) = 0 then the vectors are separable.If we have a model for the class from whichthe vector ~C is constructed we can accuratelydivide the sum into its correct components.� If 0 < cos(
) < 1 then the vectors are sep-arable only in their orthogonal components.Speci�cally, the projection of ~C onto ~O and ahyperplane perpendicular to ~O results in onecomponent that is parallel to ~O that may notbe recoverable, and a second component thatis orthogonal to ~O and can be fully recovered ifwe know the model that ~C is drawn from. It isworth noticing that if there exists a structuralrelationship between these two projected com-ponents (e.g., they are of equal length) thena full separation may again become possible.Furthermore, if the majority of the points ofthe vector belong to the perpendicular com-ponent then we will show that we can recoverthe correct decomposition.In the rest of this section we will select the rep-resentations used for ~C and ~O and discuss howthese choices impact the estimation of the two mo-tion components.We distinguish between two models of imagemotion: general models (Adiv, 1985, Black andAnandan, 1996, Yacoob and Davis, 1999) andlearned models (Black et al., 1997, Yacoob andDavis, 1998). The choices of models for use incomposite motion estimation are given in Table 1.Using general models for both camera and objectmotions leads to an underconstrained problem asre
ected by Equation (18). The use of learnedmodels of camera motion and general models forobject motion has potential only for rigid objects



12 Yacoob and Davismoving in simple ways but the extension to de-formable, articulated objects or complex rigid mo-tion trajectories is challenging since these motionsare di�cult to represent analytically. The case ofboth learned object and camera motions is a sim-pli�cation, as will be discussed later in this paper,of the general camera motion and learned objectmotion models addressed below.6.1. Camera Motion ModelWe employ the standard conventions (Longuet-Higgins and Prazdny, 1980) for representing thespatio-temporal variation of the optical 
ow asthe camera moves through a static scene. Assumea camera moving in a static scene with instan-taneous 3D translational velocity (Tx; Ty; Tz) androtational velocity (
x;
y;
z) relative to an ex-ternal coordinate system �xed with respect to thecamera. A texture element P in the scene withinstantaneous coordinates (X;Y; Z) will create anoptical 
ow vector (uc; vc) where uc and vc are thehorizontal and vertical instantaneous velocitiesuc = 
xxy �
y(1 + x2) + 
zy � (Tx � Tzx)=Zvc = 
x(1 + y2)� 
yxy � 
zx� (Ty � Tzy)=Z(20)Here, (x; y) are the image coordinates of (X;Y; Z)relative to a coordinate system in which the posi-tive Z is aligned with the line of sight of the camera(see Figure 12).KP: INSERT FIGURE 12 HEREConsider an image region R that corresponds toa stationary object represented by a set of pointspi; i = 1; :::;M and instantaneous optical 
ow vec-tors (uc; vc). Assume that the object points areapproximately at a constant distance from thecamera, Z0. In this case it is well known that the
ow measured over the region R can be modeledby an eight parameter model,uc(x; y) = a0 + a1x+ a2y + a6x2 + a7xyvc(x; y) = a3 + a4x+ a5y + a6xy + a7y2(21)where a0 = �
y � Tx=Z0a1 = Tz=Z0a2 = 
za3 = 
x � Ty=Z0

a4 = �
za5 = Tz=Z0a6 = �
ya7 = 
xThese eight parameters are estimated by poolingthe motion of many points in R into an overcon-strained system.We allow general camera motion but do as-sume that the camera motion, and so the camera-induced 
ow, is time-wise constant2 (between con-secutive frames) over the temporal window ofcomputation (i.e., s = 1; :::; n),uc(x; y; s) = uc(x; y; 1) = a0 + a1x+ a2y + a6x2 + a7xyvc(x; y; s) = vc(x; y; 1) = a3 + a4x+ a5y + a6xy + a7y2(22)6.2. A Composite Model for Object and CameraMotionExpanding Equation (19) using a Taylor series ap-proximation (assuming smooth spatial and tem-poral intensity variations) and dropping terms re-sults in0 = Isx(x; y; t)( sXj=1uo(j) + sXj=1 uc(j)) + Isy(x; y; t)(sXj=1 vo(j) + sXj=1 vc(j)) + sIst(x; y; t) s = 1; :::; n:(23)The time-generalized error is given byED(u; v) = nXs=1 X(x;y)2R �(Isx(x; y; t)( sXj=1uo(j) +sXj=1uc(j)) + Isy(x; y; t)( sXj=1 vo(j) + sXj=1 vc(j)) +sIst(x; y; t); �e)(24)Substituting the object motion model fromEquation (8) into Equation (23) results inED(u; v) = nXs=1 X(x;y)2R �([Isx Isy][ sXj=1 qXm=1 cmUm;j +sXj=1 uc(j); n+sXj=n+1 qXm=1 cmUm;j +



Learned Models for Estimation of Rigid and Articulated HumanMotion fromStationary or Moving Camera 13Table 1. Estimation strategies for composite object and camera motionsLearned Models of Object Motion General Models of Object MotionLearned Models of Camera Motion Future work Limited to simple object motionsGeneral Models of Camera Motion Developed in this paper UnderconstrainedsXj=1 vc(j)]T + sIst; �e)(25)where [ ]T is the transpose of the temporal-
owvector. Notice that the summation of the linearcombination includes only the s values of u and v.Equation (25) essentially describes how the im-age motion of a point (x; y) changes over time un-der the constraint of a temporal-
ow basis-set andgeneral camera motions.Using the spatially parameterized 
ow model ofplanar motion (see Section 4), Equation (25) canbe rewritten asED(u; v) = nXs=1 X(x;y)2R �([IsxIsy](X[ sXj=1P(j)]T+[ sXj=1 uc(j) sXj=1 vc(j)]T ) + sIst; �e)(26)where R denotes the region over which the planarmotion model is applied. P(s), s = 1; :::; n, canbe represented by a linear combination of basisvectors in a manner similar to the temporal-
owrepresentation developed in Section 4. Therefore,ED(u; v) = nXs=1 X(x;y)2R �([IsxIsy](X[ sXj=1 qXi=1 ciLi;j; :::;7n+sXj=7n+1 qXi=1 ciLi;j]T + [ sXj=1uc(j)sXj=1 vc(j)]T ) + sIst; �e)(27)Equation (27) measures the brightness motion tra-jectories assuming a composition of familiar objectmotion and general camera motion.

6.3. Computation AlgorithmObject and camera motions can be uniquely de-composed based on Equation (27) only when thespatio-temporal motion trajectories of the cam-era and object are separable (i.e., the trajectoriesof the motion models are linearly independent).First it is worth exploring how well we can recoverthe coe�cients from the sum of the 
ows. Let usconsider the simpli�ed case of a single basis vec-tor ~O that represents the object motion (this isa 1 � 8 � n for the case of a single planar regionin motion). Let � ~O denote the actual 
ow of theregion due to independent motion, and let ~C bethe unknown camera motion. Consider the prob-lem of estimating the coe�cient � that re
ectsthe amount of independent motion in the imagesequence that has a combined motion � ~O + ~C.Estimation of � can be posed as minimizing,E = jj�~O� (� ~O + ~C)jj2 (28)The solution to Equation (28) is given by� = � + jj~Cjj cos(
)jj~Ojj (29)where 
 is the angle between ~C and ~O. Recallthat the eigenvectors ~O are orthonormal, there-fore jj~Ojj = 1. Equation (29) simply states thatwe can recover � with an error equal to the pro-jected component of the camera motion onto theobject motion (the term jj~Cjj cos(
)). This maylook discouraging since ~C and ~O will typically notbe orthogonal. However, the incorporation of arobust error norm instead of least squares allowsus to relax the orthogonality requirement. Specif-ically, consider a robust formulation of Equation(28) as followsE = 8�nXj=1 �(�~Oj � (� ~Oj + ~Cj); �e) (30)



14 Yacoob and DavisFurthermore, consider the two components of ~C,~C? orthogonal to ~O and ~Ck parallel to ~O. Con-sider the �rst case in which the majority (in arobust estimation sense) of points in the vector ~Cbelong to ~C?. In this case, the estimate of � isaccurate since the majority of the points in ~C areorthogonal to ~O. As a by-product, the ~Ck can bedetermined from �. In the second case the \ma-jority" of points in the vector ~C belong to ~Ck; inthis case the recovered � is the summation of twolinearly dependent motions and therefore the mo-tions are inseparable. Since robust estimators areable to overcome about 35% of the points beingoutliers, we can tolerate linear-dependence of upto 35% of the points and expect accurate recovery.MinimizingEquation (27) can either be done si-multaneously for all parameters (i.e., c1; :::; cq anda0; :::; a7) or, alternatively, computing c1; :::; cq�rst, then warping the image sequence accord-ingly before computing a0; :::; a7. Since the cam-era model may be able, in some cases of planarobjects, to account for object motion with the\assistance" of the robust error norm (e.g., a pla-nar region moving with low acceleration) we chosea modi�ed version of the latter alternative. Thebias of the algorithm towards accounting for ob-ject motion is motivated by our assumption thatthe human motion is more \constrained" than thecamera motion and therefore it provides a betterstarting point for the minimization.The minimization is initially started at thecoarsest level of the pyramid without a cameramotion model so that a linear combination of tra-jectories (in the multi-dimensional space of basis
ow vectors) relative to the learned object motionis recovered. Then, the residual image motion inthe sequence (after compensating for object mo-tion by spatio-temporally warping the image re-gions throughout the sequence) is �t with the gen-eral camera model by minimizing the residual er-ror. At subsequently �ner levels of the pyramid,a re�nement of these estimates is carried out sim-ilarly, after spatio-temporal warping based on theestimates from the coarse level, by �rst accountingfor object motion and then camera-motion.The computation of the motions for a set offrames It; It+1; :::It+n consists of the followingstages of computation

1. Compute the amount of motion that can beassociated with the object given an activityand the temporal stage of performance of theactivity. This is done according to the esti-mation process described in Section 4. As aresult, a coe�cient vector ~c� = c1; :::; cq is re-covered.2. Use the estimate ~c� to warp the sequenceto \remove" object movement. This isa spatio-temporal warp that registers theframes It+1; :::It+n relative to It. This warp-ing leaves out a residual motion that is due tocamera motion.3. Compute the camera motion model param-eters a0; :::; a7 from the warped sequence ofstage (2). The computation follows the multi-temporal parameteric motion estimation in(Yacoob and Davis, 1999).4. Warp the sequence of (1) using the combinedestimated object and camera motions repre-sented by the parameters ~c� and a0; :::; a7.5. Repeat steps (1)-(4) using a coarse-to-�nepyramid estimation process.The error minimization steps for the object andcamera motion parameters in stages (1) and (3)employ the Graduated-non-Convexity and a gra-dient descent (simultaneous-over-relaxation) algo-rithm as described in Section 4.7. ExperimentsIn this section we report on several experimentscarried out to demonstrate the approach. Com-posite motion of both rigid and articulated objectsare presented. The object motions will be mod-eled using parameterized motion models such asthe planar model discussed earlier.Figure 13 illustrates the interpretation of theimage motion captured by the �rst six parame-ters of the parameterized planar model used toapproximate 
ow. The translation in the horizon-tal and vertical directions is captured by a0 and a3respectively, while the divergence, deformationand curl are captured by the following equations(see Figure 13)divergence = a1 + a5 = (Ux + Vy);curl = �a2 + a4 = �(Uy � Vx);deformation = a1 � a5 = (Ux � Vy)



Learned Models for Estimation of Rigid and Articulated HumanMotion fromStationary or Moving Camera 15KP: INSERT FIGURE 13 HERE7.1. Rigid MotionWe demonstrate composite motion estimation onthe falling book using the model developed in Sec-tion 5. Figure 14 shows the results of compositemotion estimation of a book fall while the camerais translating to the right. The bottom left graphshows the recovered horizontal velocities of thebook and camera. As expected, the book fallingleads to zero horizontal speed, while the cameramoves at a constant speed of about 1.4 pixels perframe. The bottom right graph shows that thecamera's vertical motion is very close to zero whilethe book's speed increases linearly due to gravity.Towards the end of the sequence the accumulationof errors decreases the accuracy of our estimates.Figure 15 shows the results of composite mo-tion estimation of the book's fall while the camerainitially rotates clockwise then counter-clockwiseabout an axis o� its center. The bottom leftgraph shows the recovered horizontal velocities ofthe book and camera. As expected the fallingbook has zero horizontal speed, while the cam-era starts with a movement rightward then left-ward. The vertical speed of the book is only partlycorrect. The increase in speed up-to frame 2380corresponds correctly to the falling model; then,for a few tens of frames, the velocity decreasesas the camera's motion successfully accounts forthe missing book falling component. This occurssince the book appears to fall horizontally at thatstage of camera rotation, and therefore is not welldescribed by the basis 
ow that represents verti-cal motion. This corresponds to the case of lackof majority of points belonging to the orthogonalcomponent of the motion as discussed in Section6.3. As the camera reverses its rotation (aroundframe 2400), the estimation recovers from this am-biguous state. The bottom right graph shows therecovered image rotation (curl) of the object andcamera. As expected, the book does not rotateand the camera rotates clockwise then counterclockwise at about frame 2400.Figure 16 shows the results of simultaneous mo-tion estimation for another book fall in which thecamera is moving away from the book. The graphsin the third row show the recovered horizontal and

vertical velocities of the book and camera. Thebook velocities are close to what is expected whilethe camera has some horizontal velocity compo-nent. The bottom row graphs are for the diver-gence and deformation components. Clearly thebook is shrinking in size at a linear rate (thenaccelerated rate) as the negative divergence indi-cates. Moreover, since the falling book is rotatingslightly away from the camera, there is a mea-sureable deformation in the horizontal direction(positive deformation).KP: INSERT FIGURE 14 HEREKP: INSERT FIGURE 15 HEREKP: INSERT FIGURE 16 HERE7.2. Articulated Human MotionWe employ the basis vectors computed in Section5.2 with new sequences involving camera motion.Figure 17 shows the results of composite motionestimation for a new instance of walking of a sub-ject using only the �rst basis-vector of the spatio-temporal 
ow; the camera is translating vertically.The bottom row shows the horizontal, verticaltranslations and the curl of the �ve body partsand the camera. As recovered, the camera haszero horizontal velocity and an initial downwardvertical translation due to upward camera motion(frames 2045-2090) after which the opposite oc-curs. No camera rotation was measured. Noticethe close similarity between the measurement ofthe �ve body parts relative to the graphs in Fig-ure 3. Figure 18 shows the results of compositemotion estimation for a new instance of walkingof a subject; here, the camera is rotating clockwisearound an axis o� its center. Since the rotationangles are small they are often confused with hor-izontal and vertical translations. Otherwise, theperformance is similar to that shown in Figure 17.Figure 19 shows the results of composite mo-tion estimation for a new instance of walking ofa subject; here, the camera is rotating clockwisearound an axis o� its center.KP: INSERT FIGURE 17 HEREKP: INSERT FIGURE 18 HEREKP: INSERT FIGURE 19 HERE



16 Yacoob and Davis8. DiscussionWe presented a new approach for image motionestimation from multiple frames that uses learnedmodels of spatio-temporal 
ow. Demonstration ofthe performance of the algorithm on both rigidand articulated motions was provided. An activ-ity learned from one speci�c viewpoint was used toestimate the motion of a di�erent subject perform-ing the same activity from a similar viewpoint.Also, it was demonstrated that tracking of theoccluded body parts is possible when a temporalmodel of one side of the body has been learned.Learning plays a critical role in the accuracyof 
ow estimation. In our experiments on articu-lated motion, we observed that the inaccuraciesof the cardboard model from (Ju et al., 1996)used to generate the training set for the learn-ing algorithm lead to similar inaccuracies in thespatio-temporal 
ow estimation. The tracking ofthe foot has been particularly problematic since inmost image sequences it occupies a region of onlyabout 30-100 pixels.The learning of spatio-temporal 
ow models ofactivities was performed independently for eachactivity considered (e.g., a separate model foreach of walking, marching etc.). Subsequent bodymotion tracking would simultaneously employ allmodels to estimate the image motion, with the\best" model selected. It remains an open prob-lem to develop a single representation for all ac-tivities so that a single processing of the data besu�cientThe spatio-temporal 
ow estimation performssuccessfully even when the motions of some partsdo not conform to the model, as long as a themajority of parts do conform. For example, in thecase of walking, overall tracking is not disrupted ifthe arm is not moving in a manner consistent withits motion during the learning stage. Of course,the arm tracking fails, but the overall body track-ing remains accurate. The current strong couplingbetween motions of body parts will be relaxed infuture research to allow weaker motion couplingsfor certain parts.Our current temporal-models are \strict" intheir interpretation of the time axis. In articulatedmotion, we assumed that the learned models andsubsequent observations progress on an equal time

scale, i.e., each time increment in the trackingleads to an equal increment in the model. This as-sumption is limiting since activity instances mighthave a signi�cantly di�erent \pace." In recentwork (Yacoob and Black, 1998) we proposed anapproach for analytically accounting for tempo-ral variations in performance of movements. Thisapproach explicitly computes a time-scaling pa-rameter that can directly be used in the currentspatio-temporal measurement model.The approach for decomposing camera and ob-ject image motions is a departure from currentresearch on multiple motion estimation. The fol-lowing brie
y summarizes the di�erences:� Multiple motions have been generally consid-ered as motions occurring in non-overlappingregions. Our approach considers two motionsources (object and camera) within a single re-gion. In other words, multiple motion compu-tation is posed as a spatial segmentation prob-lem (Boult and Brown, 1991, Costeira andKanade, 1995), composite object and cam-era motion is a spatio-temporal decomposi-tion problem.� Image motion decomposition is pursued in adirect manner without employing secondarymotion clues. Speci�cally, progressive solu-tion by �rst estimating camera motion (e.g.,as the dominant motion (Tian and Shah,1997)) and then object motion is replaced bydirect association of image motion in the ob-ject region to object typical-motion trajecto-ries and camera model.� The hypothesis of pre-learned object-typicalmotions is proposed as a means to separatethe sources of image motion. The problem istransformed into �nding the motion parame-ters in the subspace of object motions and themotion parameters of the camera.The separability of camera and object motionsis most challenging when these motions are lin-early dependent in a subspace Rw of R2n. Our ro-bust formulation of the error minimization leadsto the observation that we can recover the cor-rect components as long as the orthogonal sub-space (i.e., R2n�w) is the \majority" component(in a robust estimation sense). The reason is thatthe orthogonal component can be recovered and



Learned Models for Estimation of Rigid and Articulated HumanMotion fromStationary or Moving Camera 17will itself determine determine the linearly depen-dent components by the implicit exploitation oftheir couplings through the basis vectors. In caseswhere the linearly dependent subspace is too large,recovery is not possible using our current formu-lation.AcknowledgementsThe support of the Defense Advanced Re-search Projects Agency (ARPA Order No.#C635), the O�ce of Naval Research (contractN000149510521) is gratefully acknowledged.Notes1. The distance and viewing direction in the training datawas constant. The viewing direction was approximatelyfronto-parallel.2. A constant accelerationmodel can easily be substituted,see (Yacoob and Davis, 1999).ReferencesAdiv, G.:1985, Determining three-dimensional motion andstructure from optical 
ow generated by several movingobjects. IEEE Transactions on Pattern Analysis andMachine Intelligence, 7(4), pp. 384-401.Baumberg, A.M., Hogg, D.C.:1994, Computingoptical 
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C
oFig. 1. Four frames of a falling book tracked by a spatio-temporal 
ow model (top rows), the horizontal and vertical veloc-ities components of the learned basis-vector (third row) and the recovered expansion coe�cient throughtout the sequence(bottom row).
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oFig. 2. A sequence of falling box (top row), the tracked box (middle row) and the recovered spatio-temporal 
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ow coe�cient for the falling book (dashedline).
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ow tracking of a new subject'swalk employing one, two and three basis vectors (top to bottom).
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ow tracking.
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(2160) (2180) (2200)Fig. 11. A few frames from a long image sequence of a subject walking with the spatio-temporal 
ow tracking of a newsubject's walk for both the visible and occluded parts and the recovered coe�cient.
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(2122) (2142) (2162)Fig. 19. A few frames from a long image sequence of a subject walking with the spatio-temporal 
ow tracking of a subject'swalk with camera rotation and the recovered parameters.
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