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Abstract

This paper presents a probabilistic exemplar-based
framework for recognizing gestures. The approach is based
on representing each gesture as a sequence of learned body
poses. The gestures are recognized through a probabilistic
Jramework for matching these body poses and for impos-
ing temporal constrains between different poses. Matching
individual poses to image data is performed using a prob-
abilistic formulation for edge matching 10 obtain a likeli-
hood measurement for each individual pose. The paper in-
troduces a correspondence-free weighted matching scheme
for edge templates that emphasize discriminating features
in the matching. The weighting does not require establish-
ing correspondences between the different pose models. The
probabilistic framework also imposes temporal constrains
berween different pose through a learned Hidden Markov
Model (HMM) of each gesture.

1 Introduction

The recognition of arm and hand gestures has many ap-
plications in human computer interaction, virtual reality and
in robotics. Our objective is to recognize arm gesiures per-
formed by a human standing at a distance from the cam-
era. This might be to-operate a robot or a vehicle driven by
a robot or generally to control an environment using ges-
tures. This paper presents a prototype system for view-
based recognition of gestures. In particular, the approach
is designed to operate a robot driven vehicle by recogniz-
ing human arm signaling. The paper presents an exemplar-
based approach where each gesture is represented as a se-
quence of learned body poses through a probabilistic frame-
work for matching these body poses to the the image data.
The probabilistic framework also imposes temporal con-
strains between different pose through a learned Hidden
Markov Model (HMM) of each gesture. ‘Matching indi-
vidual poses is performed using a probabilistic formulation
for Chamfer matching to obtain a likelihood measurement
for each individual pose. The paper introduces a weighted
matching scheme for edge templates that emphasize dis-
criminating features in the matching. The weighting does
not require establishing correspondences between the dif-
ferent pose models.

Different approaches have been proposed for gesture
recognition. These approaches can be classified into three
major categories: model-based, appearance-based, and
motion-based. Model-based approaches focus on recover-
ing three-dimensional mode! parameters of articulated body
parts [13, 6]. Appearance-based approaches uses two di-
mensional information such as gray scale images or body
silhouettes and edges. In contrast, motion based approaches
attempt to recognize the gesture directly from the motion
without any structural information about the physical body,
for example [1]. In all these approaches, the temporal prop-
erties of the gesture are typically handled using Dynamic
Time Warping (DTW) or statistically using Hidden Markov
Modeis (HMM).

The paper is organized as follow. Section 2 gives an
overview of the proposed system. Section 3 presents the
gesture tracking framework. Section 4 presents the pro-
posed pose classification approach. Section 5 describes the
hidden Markov model used for gesture recognition. Sec-
tion 6 illustrates some experimental results.

2 System Overview

Figure 1 describes an overview of the proposed system.
The system consists of three modules: Training, Segmenta-
tion and Tracking, and Gesture Recognition. The training
module learns models for body poses. It also learns tem-
poral medels of each individual gesture as a sequence of
the learned body poses through a Hidden Markov Model
(HMM). Finally the training module learns models of the
activities, i.e, the different gesture that can be recognized
and their temporai relations. The segmentation and tracking
meodule continuously segment and track the person perform-
ing the gesture from the rest of the background. The seg-
mentation from the background is performed using coarse
range data through a series of plane fitting to the range data
and a rule based system to determine which plane in the
range corresponds to the person. The range data is regis-
tered to the video data, therefore locating the person in the
range image locates the person in the video data. Since the
segmentation is performed using a very coarse range data,
the output of this module is just the location of the person
in the image as a rectangle. The quality of the range data, in
terms of accuracy, is not enough to provide fine silhouette
segmentation or to do gesture recognition. For an example
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Figure 1. System Overview

of the quality of the result of the segmentation, see figure 8.
The system is supposed to be mounted on a moving vehi-
cle; therefore the person is continuously tracked in both the
range and the video to provide the context information nec-
essary for the recognition module.

The gesture recognition module uses only the video data.
It matches learned silhouette models through coarse to fine
search around the person location, provided by the segmen-
tation and tracking module, to register the learned poses
to the video data. The recognition module, then, matches
all learned pose models to each new image to obtain pose
probability likelihoods. The gesture classification part uses
the learned HMM of each gesture to impose temporal con-
strains on the body poses and therefore determine the ges-
ture class. The gesture recognition module also uses an
HMM activity model to determine the beginning and the
end of each gesture (gesture segmentation),

3 Exemplar-based model

We use the definition of [3, 2]: An exemplar space is
specified by a set of “exemplars”, X = {z*,k = 1.. K},
containing representatives of the training data, and a dis-
tance function, p, that measures the distortion between any
two points in the space. The work of [2] was a major step
towards learning probabilistic models based on exemplars
as centers of a probabilistic mixture. The work of [16] was
another major step that introduces the use of exemplars in a
metric space within the same framework.

Figure 2 shows the probabilistic graphical model for
our exemplar-based tracking of arm gesture. The models
used in this paper differs from that used in [2] and [16]
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in a principle way: We use a model where there is no
coupling between the states and the exemplars. At each
discrete time, t, the system state is denoted by the pair
{(gs, @) and x; denotes the exemplar at time ¢t. The hid-
den variable g, representing a Markov stochastic process,
can take any value from a set of M distinct abstract states,
S = {s1,82,--,8n}, . The R.V. T; can be any exemplar
from the set of exemplars X = {2*, k = 1, - K'}. The ob-
servation z; at time ¢ is considered to be drawn from a prob-
abilistic mixture, i.e., 2 = T,Z; where {Z#;,k = 1--- K}
are the exemplars and T, is a geometric transformation with
parameter «v. The system dynamics is defined by the transi-
tions P(q:lq:—1) and P(e¢|a—1).

The observation z; at time ¢ is a probabilistic mixture
from all the exemplars and can be calculated using

K
P(zlar, o) = Y Plalze = o¥, 00) Pl = 2%|g0, o)

k=1
(n
Since the exemplar, x;, does not depend on the transforma-
tion, oy, we can drop the transformation parameter from the
second term and therefore the observation at time z, is

K
Plalg, o) =Y Plale, = 2", a0) Pla = 2¥la) ()
k=1

The term P(z;|z, = z*, ;) represents the observation
model and will be discussed in the section 4. We call the
term Pz, = z*|g;) the intermediate observation probabil-
ity and this can be learned offline from the exemplar training
set as part of the HMM learning procedure. The dynamics
of the system, represented in the transitions P(q;|q:—1) and
P(ag|ag—1), are also learned from the training data. For
details about the learning procedure refer to [?].

4 Pose Classification
4.1 Pose Likelihood

We represent each gesture as a sequence of body poses.
This section focuses on matching individual body poses to
image data. The objective is to evaluate all different body
pose models with respect to each new frame, z,, in order to
obtain estimate of observation probability given each pose,
Plz|X*), where § = {X¥® k = 1-.-M} is the set of



Figure 4. Pose template registered to an im-

Figure 5. Distance Transform
all learned body poses for all the gestures to be recognized.
Each pose X ¥ is represented as an edge template, i.c., each
pose is represented as a finite set of edge feature locations

Xk = {ET,Ig,"-,mfnk}-,

where 1* is the number of edge features for pose exem-
plar k. Figure 3 shows example pose templates for two dif-
ferent gestures. All the poses are registered to each other
during the learning so registering one pose to any new im-
age will therefore register the rest of the poses. Registering
these poses to the images is done while the person is not
performing any gesture (idle). In this case, the matching is
performed using an idle pose (shown in figure 3, first pose
on top) through a coarse to fine search, Figure 4 shows the
registered poses 1o a new frame. ‘

The problem of matching a feature template correspond-
ing to an object to an image is a classical problem in com-
puter vision with many applications for object detection,
recognition and tracking. The objective is to match a fea-
ture template, X, which is a finite set of feature points
z = {Z1,T2, - Tn 1O an image,

The distance transform, DT, has been used in matching
edge feature (and other feature) templates: Given a set of
features, F, detected in an image I, the distance transform,
dp(z), at pixel z, is defined to be the distance to the nearest
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Figure 3. Example body poses from iwo different Gesture

feature point in the image, 1.€.,
d = min p(x,
#(@) = minp(z, /)

where p is a metric. Typically the Euclidean distance is used
for the metric p and in this case the function d(z) defines the
Voronoi surface of F [7]. The distance transform is defined
with respect to a set of binary feature of the same type, e.g.,
edges or comers.

Given a template X = {x1, 23, - 2,}, where z;’s are
the locations of the template features transformed into the
image space through translation, rotation, scaling or other
geometric transformations, the matching can be achieved by
averaging the distance transform values at each transformed
template feature location x;, i.e., the matching D(X,I) score
is 1

D(X,F) =~ dp(z;) 3)
3

This form of matching is called Chamfer matching and
the distance D{X, F} is called the Chamfer distance. The
smaller this matching score, the better the match and an
ideal match will have the value O where the template ex-
actly lie over its corresponding image location. Chamfer
distance has been used extensively in object detection, for
example in [5]. Note that Chamfer matching is asymmetric
(model to image) so additional features in the image will
not contribute to the matching. Figure 5 shows an example
of an image and the detected edge features and the distance
transformed image according to these features.

In [4] the matching was generalized to include multiple
feature types, (for example, oriented edges) by matching
each individual feature template with its corresponding dis-
tance transformed image and combining the results. Alsc
the matching was generalized in [4, 5] to match multiple
templates through a hierarchical template structure.

At each new image, z;. it is desired to find a probabilis-
tic matching score for each pose. Let dr(x) be the dis-
tance transformed image given the set of edge features, I,
detected at this image. For each edge feature ¥ in pose
model X*, the measurement D¥ = dr(zF) is the distance
to the nearest edge feature in the image. Consider the ran-
dom variable associated with this distance measurement,
and let the associated probability density function (PDF) be
pF. We assume that these random variable are independent.
This assumption was used in [9, 11] based on the results
obtained in [10]. Therefore, the likelihood function (the
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probability of the observation given the model X *) can be
defined as the product of these PDFs as

mk

L(X*) = Pr(z|X*) = [ ¥ (DF)
i=1

Since different templates have different numbers of fea-
tures, this likelihood equation needs to be normalized using
the number of features in each model,m*. Taking the loga-
rithm of this equation we obtain the log-likelihood function

log L(X*) = Zlogpl D¥) 4)

If all the poses are assumed to be equiprobable, then the
model probability given the observation is proportion to the
likelihood, i.e., P(X*|I) o« P(I|X¥). Therefore we can
use this likelihood function to evaluate different models.

The PDE  p* for the distance between model features
and nearest image feature location is defined for each fea-
ture ¢ in each pose model k. We use a PDF of the form

PE(D) = ¢ + —me P20

1
of\2w

The scale parameter o¥ is defined for each pose & and each
feature 7. The motivation behind this is that different vari-
ations {or uncertainty) are expected at different model fea-
tures; for example, the edges corresponding to the hand are
expected to have more variations in location than the upper
arm or the shoulder location. These variations are learned
during the learning of the pose models. Since the distance
D can become arbitrary large, the probability can become
very small and therefore the constant ¢, is used as a lower
bound on the probability. This makes the likelihood func-
tion robust to outliers. A similar PDF was used in [9] but
with the same scale variable o for all the features.

This probabilistic formulation was first introduced in {9]
and was used in a Hausdorff matching context to find the
best transformation of an edge template using maximum
likelihood estimation. Equation 4 represents a probabilistic
formulation of Chamfer matching. We use this probabilis-
tic formulation to evaluate the observation likelihood given
each gesture state as will be described in section 5

4.2 Correspondence-free Weighted Matching

Our objective is to match multiple pose templates to the
same image location in order to evaluate the likelihood of
the observation given each of these poses. Typically, the
different pose templates are similar in some parts and dif-
ferent in another parts in the templates. For example, the
head, torso and bottom parts of the body are likely to be
similar in different pose templates, while articulated body
parts that are involved in the gesture, such as the arm, will
be at different positions at different pose templates. For ex-
ample, see figure 4. Since the articulated part, such as the
arm, is represented by a small number of features with re-
spect to the whole pose templates, the matching is likely
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to be biased by the major body parts. Instead, it is desired
to make the matching biased more by articulated parts in-
volved in performing the gesture since these parts will be
more discriminating between different poses templates.

To achieve this goal, different weights are assigned to
different feature points in each pose template. Therefore
each pose template, X T represented as a sel of feature
locations as well as a set of weights, {wl wh - wh L)

corresponding to each feature where Zl Lwk = 1. The
likelihood equation 4 is then modified to be a welghted oneg

mF

Zw log p¥(DF) (5)

i=1

log L(X*)

In our case, the set of all recognized poses does not have
a common correspondence frame. For example, some fea-
tures in one pose might not have corresponding features in
another poses. Also we do not restrict the pose templates to
have the same number of features. Therefore we drive the
weights with respect to the image locations.

Let X be the set of all features in all registered poses in
the training data, i.e.,

X = L_JX’c ={z1,%2,"  Tm}
%

where each x; is the image location of an edge feature.
Given this sample of edge feature locations, the edge proba-
bility distribution f(y) (the probability to sce an edge at cer-
tain image location, 1) can be estimated using kernel density
estimation [14] as

. 1 &
fy) = = Knly — =)
m <
i=1
Where K, is a kernel function with a scale va:iabzle h. We
. — 1 1/2(d) :

used a'C.Jausm?m kf:mel Kp2) Tant =) for this
probability estimation.

The weight assigned to each feature point is based on
the information this feature provides. Given the estimated
edge probability distribution, f{y}, at any image pixel, y,
the weight for a certain feature  at a certain pose & is the
ratio of the information given by this feature to the total
information by that pose, i.e.,

Wt = log f(-’ﬂf)
3 log f(¥)

5 Gesture classification

Figure 6. Left-Right HMM



The classification of gesture is achieved through evalu-
ating the image sequences likelihood given a set of Hid-
den Markov Models (HMMs) each representing a ges-
ture. HMM’s have been used in gesture recognition con-
text. They were used in [15] for American Sign Language
recognition (ASL) by tracking the hands based on color.
In [18, 17] HMM’s were also used for ASL based on shape
and motion parameters. [n [8] HMM’s were used to track
head gestures. In [19] a parameterized HMM was intro-
duced to model parametric gestures. '

Generally, an HMM is defined as the states, S, the tran-
sition probabilities between the states, A = {a;;} where
a;; = Plget1 = sj|g = s;] where ¢ is the state at time ¢,
and the initial state distribution  where m; = P[q1 = 3.
Finally, the observation probability given the states b ;(O) =
P(OlS])

We represent each gesture g by a set of poses P, =
{X* k =1,---,K} and an HMM , A9, where the hidden
states correspond to the progress of the gesture with time.
The HMM elements are as follows:

1. A set of NV states S = {s1,52,---,8n}. We use g
to denote the state at time ¢. Note that the number of
states is not necessarily the same as the number of pose
models, M, i.e., each state does not necessarily repre-
sent one pose. Instead, one state can represent a mix-
ture of pose models. ‘

2. The state transition probabilities A = {a;;} where
aij =P[qt+1 =5j|Qg = 31’} Vi,j =1---N. We
use a left-right model or a Bakis model [] as in figure 6
since the progress of the gesture is always forward in
time. This imposes a constraint on the dynamics which
leads to better generalization since thére are less tran-
sitions to adjust.

3. The initial state distribution = where 7; = Plg1 =
5] ¥i=1---N.

4. The probability of each pose X ® given the states, C' =
{cjk = P(X¥|s;) Vi=1---NVk=1---M}

Training sequences of poses are used to learn the model pa-
rameters

The actual observation () is the detected edge features
at each new frame, which is a probabilistic function of the
current state of the gesture. This probabilistic function is
defined using the set of recognized poses P,. That is, the
observation probability given the state can be written as

b5(0:) = P(Okls;) = 3 P(OJX*)P(X¥|s;)
k=1

Given the definition of the variables ' abbve, this can be
rewritten as :

M
b;(Og) = P(Ou)s;) =Y e P(O1|XF)

k=1

We can think of the set of poses P, as a set of discrete sym-
bols or alphabet that is being emitted by the different states,
but the actual observation is a probabilistic function of these
symbols based on the mixture defined by the variables C.
The observation probabilities given the poses, P(O|X*),
are obtained using the likelihood equations 4 and 5 as was
described in section 4

Given a set of observations O = 010,,---,0r and
given a set of HMM models AY corresponding to differ-
ent gesture, the objective is to determine the probability of
that observation sequence given each of the models, i.e.,
P(O|M)V¥g. This is a traditional problem for HMM and
can be solved efficiently through a procedure called the
Forward-Backward procedure [12]. This procedure defines
a set of forward variables (i) = P(O105---Or.q =
S;|A) which can be updated recursively at each time step
by:

N
a1(5) = [Z at(i)aa} bj(Op41), 1€t <T 1
i=1

where a1{(i) = w;0;(O1). Given these forward variables,
the observation likelihood can be calculated as

N
P(O|A) = " ar(i)
i=1

6 Experimental Results

The proposed approach was used to classify eight arm
gestures. Basically, the eight recognized gestures are simi-
lar to the ones shown in figure 4, performed with both arms,
in upward motion and downward motion. Figure 8 shows
the segmentation results obtained from the range data. The
image is color coded so that each fitted plane has a different
graylevel and the segmented person is labeled white. Fig-
ure 9 shows some pose classification results for different
people. The figures shows the pose with the highest likeli-
hood score overlaid over the original image.

Figure 8. Segmentation result

Figure 7 shows the gesture likelihood probabilities for
the eight gesture classes. As can be noticed from the graphs,
All the gestures were close in likelihood at the beginning of
the action but as the gesture progresses with time, the like-
lihood of the right gesture increases, and the the likelihood
of the other gesture decreases as a result of the temporal
constrains imposed by the HMM for each gesture.
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