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Abstract

Linear parameterized models of optical flow, particularffine@ models, have become
widespread in image motion analysis. The linear model adeffis are straightforward to
estimate, and they provide reliable estimates of the dflima of smooth surfaces. Here we
explore the use of parameterized motion models that represech more varied and complex
motions. Our goals are threefold: to construct linear bésesomplex motion phenomena,;
to estimate the coefficients of these linear models; anddogrize or classify image mo-
tions from the estimated coefficients. We consider two brdadses of motions: i) generic
“motion features” such as motion discontinuities and mgvars; and ii) non-rigid, object-
specific, motions such as the motion of human mouths. Foromdéatures we construct a
basis ofsteerable flow fieldthat approximate the motion features. For object-speci@iians
we construct basis flow fields from example motions usinggipad component analysis. In
both cases, the model coefficients can be estimated difeattyspatiotemporal image deriva-
tives with a robust, multi-resolution scheme. Finally, vimw how these model coefficients
can be use to detect and recognize specific motions such msiooccboundaries and facial
expressions.

Index terms: Optical flow, motion discontinuities, occlusion, steegdfilters, learning, eigenspace
methods, motion-based recognition, non-rigid and ariiad motion.
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1 Introduction

Linear parameterized models of optical flow play a significale in motionestimatiorand motion
explanation They facilitate estimation by enforcing strong constigion the spatial variation of
the image motion within a region. Because they pool hundoedisousands of motion constraints
to estimate a much smaller number of model parameters, gresrglly provide accurate and stable
estimates of optical flow. Moreover, the small number of peeters provide a concise description
of the image motion which is useful for explanation; for exde parameterized models of optical
flow have been used to recognize facial expressions fromarsaguences [15].

Translational and affine models have been used succedsiuigtimating and representing the
optical flow of smooth textured surfaces [7, 21, 26, 27, 3959). These models have been applied
locally within small image regions, and globally, for amaiiions such as image stabilization and
mosaicing. Low-order polynomial models have a common nma#tieal form, where the optical
flow field, u(x; c), over positionx = (z, y) can be written as a weighted sumbzfsis flow fields

u(x; c) = Zn: ¢jbj(x), (1)
j=1

where{b;(x)};=1.., is the basis set and = (cy, ..., ¢,) is the vector containing the scalar co-
efficients. A translational model requires two basis flowdeglencoding horizontal and vertical

translation, while affine models require six basis flow fielssshown in Figure 1. With this linear

form (1), the model coefficients can be estimated directiynfithe spatiotemporal derivatives of
image intensity in a stable, efficient, manner. In particulee gradient constraint equation, derived
by linearizing the brightness constancy constraint, isdimin the motion coefficients [7, 40].

But the use of such models is limited to motions for which thedeis are good approxima-
tions to the actual optical flow. Affine models account for thetion of a planar surface under
orthographic projection and provide a reasonable appratan to the motions of smooth surfaces
in small image regions. But they have limited applicabit@dycomplex natural scenes. For exam-
ple, many image regions contain multiple image motions beeaf moving occlusion boundaries,
transparency, reflections, or independently moving objddany natural scenes also contain com-
plex local patterns of optical flow.

A great deal of work has been devoted to extending parametennodels to cope with multiple
motions [1, 2, 8, 12, 24, 37, 38, 58]. By varying the spatigdmurt of the model according to the
expected smoothness of the flow [53], using robust stagistechniques [2, 45, 12] or mixture
models [1, 37, 38, 55, 61, 60], or by employing layered regmégtions [58], researchers have
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Figure 1: Affine motion model expressed as a linear sum obgahal basis flows. As with flow
fields show below, the black dot denotes the origin of the fleator, and the length and direction
of the line segment reflect the speed and the direction of@watpcity.

been able to apply simple parameterized models to a reagonale variety of situations. Some

researchers have extended regression-based flow techiigyend low-order polynomial models
to overlapping splines [52] and wavelets [62], but most hemecentrated on the estimation of
optical flow fields that arise from the motion of smooth suefpatches.

Complex motions, like those in Figure 2, remain problemasiat, while each type of motion
in Figure 2 is more complex than affine, each is also highlystaimed. For instance, mouths are
physically constrained, performing a limited class of ran8, yet they pose a challenge for optical
flow techniques. Having a model of the expected motion of m®wtould both improve flow
estimation and provide a rich description of the motion thaght aid subsequent interpretation.

This paper concerns how one can explicitly model certaissga of complex motions, like
those in Figure 2(a,b), using linear parameterized mod&& address three main problems,
namely, model construction, optical flow estimation, anel detection of model occurrences. A
key insight is that many complex motions can be modeled amt@®d in the same way as a con-
ventional affine model; that is, as linear parameterizedetsod he construction of a parameterized
model amounts to finding an appropriate bgdis(x)},-,..,. Here, we describe how to construct
models forgenerictypes ofmotion featuressuch as moving edges (occlusion boundaries) and
moving bars, and fodomain-specifienotions like the motion of human mouths. For some motion
classes, e.g. discontinuities, we compute optimal linaaidsets directly from a generative model.
In others, e.g. human mouth motion, explicit generative e®thay not be available, and we show
how to construct approximate models from example motiomgysrincipal component analysis.

The resulting models can be used for optical flow estimatswell as motion-based recogni-
tion and tracking. To compute optical flow with linear paraenzed models wéirectly estimate
the model coefficients from spatiotemporal image deriestivsing a conventional area-based re-
gression technique. We use a robust, coarse-to-fine, gitaloiesed algorithm. If the fitted model
provides a good description of the time-varying image, thie& can also use the estimated coeffi-
cients of the model for detection and interpretation ofanses of a particular motion class. Here
we provide examples of the detection of motion edges, mobarg, as well as the recognition of



Figure 2: Examples of scenes with complex motions (delewtly the white borders). (a) Non-
rigid and articulated human motion. (b) Generic motiondeas$ include motion discontinuities
and moving bars. (c) “Textural” motion of cloth and plants.

simple speech and walking motions.

2 Problem Context and Related Work

Below we review previous work that addresses complex metsuth as those depicted in Figure
2, namelygeneric motion featureslomain-specific motion modeEndmotion texture

Generic Motion Features: Early approaches to occlusion detection involved the egton of
dense optical flow, from which motion discontinuities werert detected. Authors explored region
or edge segmentation techniques [47, 54] and analyzed strbdtion of flow vectors in local
neighborhoods [51]. These methods are often unreliablausecthey require accurate estimates
of optical flow near the motion boundary, where optical flowlifficult to estimate.

Other approaches have explored the local spatiotempoeajenstructure at a motion discon-
tinuity [22, 28, 44]. For example, Fleet and Langley [28] ewaed the structure of occlusions
and motion discontinuities in the frequency domain (als®[8¢) and discussed detection meth-
ods based on second-order motion processing. Black anddangt1] looked for multiple peaks
in a sum-of-squared difference surface as evidence of dngcn/disocclusion boundary. These
methods do not explicitly model the image motion presentrabtion feature, and have not proved
sufficiently reliable in practice.

More recent optical flow techniques estimate piecewise $imftaw fields using line processes
or robust statistics that treat motion discontinuitiesiatations of a spatial smoothness assumption
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Figure 3: A motion discontinuity can be approximated by aghieed sum of basis flow fields.

[12, 34, 35, 50]. Although these methods work with motioncdigtinuities in many instances,
they embody a relatively weak model of discontinuities dre/tdo not generalize easily to more
complex features such as moving bars.

In contrast to previous approaches, here we constructagx@pproximate) models of motion
features using linear combinations of basis flow fields astithted in Figure 3. Estimating the im-
age motion with these models is analogous to motion estimatith conventional affine models.
In this way the coefficients of the model are recovered diydodm the image data without first
computing a dense optical flow field.

The proposed framework can be used for any motion that canelieapproximated using a
linear parameterized model. In this paper we experimerit mibving edges and bars, like those
in Figure 2(b). We refer to these amtion featureso emphasize their relationship to static image
features. Throughout the history of computer vision, iméggures such as lines, edges, and
junctions have been treated as primitive structures in @sagon which later stages of processing,
such as segmentation and object recognition, are basedouijh work on feature detection has
focused on static images, such as edges and lines, theneaogaus features in image sequences
and binocular image pairs. Compared to static image fegttihese motion and stereo features
typically convey direct information about scene structuiteis therefore important that we treat
motion features as a source of structure to model, ratherahsource of error in the estimation

process.

Domain-Specific Motions:  Figure 2(a) shows two other domains in which motion models
would be useful both to constrain optical flow estimation emfhcilitate interpretation and recog-
nition. Motion estimation of mouths during speech is a @rale for conventional optical flow
techniques because of the large image velocities that aglan the mouth is opening or clos-
ing. In addition, the appearance and disappearance ofigeiéoand mouth cavity are particularly
problematic for techniques that assume intensity contiervfl8]. For these reasons a model of
mouth motion will help constrain the estimation of opticaWil The time-varying coefficients of
the model may also provide an effective description of the tlwat can be used for recognition.
Black and Yacoob [15] modeled the motion of a human face anlffeatures using pa-



rameterized flow models (planar, affine, and affine+curegtufhey showed how simple models
could represent a rich variety of image motions, and how tb&an parameters could be used
to recognize facial expressions. Another recent examptiofain-specific motion models is the
kinematic-based model of articulated human figures usethtk people [19, 63]. In these ap-
proaches, linear parameterized models were designed sthéhkinematic parameters could be
extracted using a gradient-based motion constraint emuaBut in both of these studies the mo-
tion models were hand-coded. In the case of human mouth$iathe-coded model proved too
crude for the recognition of speech as it did not capture #teral variability of human mouths. In

this paper, by comparison, we show how models of facial featuotion can be constructed from
examples and used for the recognition of speech in highlgtcaimed situations.

Much of the recent work on learning domain-specific modelsrage deformation has oc-
curred in the face recognition literature, where the go#&b isiodel the deformations between the
faces of different people, or faces of a single person ireckffit poses [9, 25, 33, 41, 56, 57]. Cor-
respondences between different faces were obtained éyheaind or by an optical flow method,
and were then used to learn a low-dimensional model. In s@sescthis involved learning the
parameters of a physically-based deformable object [#ldthers, a basis set of deformation vec-
tors was obtained (e.g., see work by Hallinan [33] on legrilBigenWarps”). One of the main
uses of the learned models has been view-based synthesigbs57, 23] for example.

Related work has focused on learning the deformation ofesiov parameterized curve models
[4, 49]. Sclaroff and Pentland [49] estimated modes of deédion for silhouettes of non-rigid ob-
jects. Sclaroff and Isidoro [48] use a similar approach taleidhe deformation of image regions.
Like our method they estimate the linear coefficients of tloeleh directly from the image. Unlike
our approach, they did not learn the basis flows from optical #xamples of the object being
tracked, nor use the coefficients for detection or recogmiti

Motion Texture:  The flags and bush shown in Figure 2(c) illustrate anothen fof domain-
specific motion, often called motion texture. Authors haxplered texture models for synthe-
sizing such textural motions and frequency analysis teghes for recognizing them [43]. These
motions typically exhibit complex forms of local occlusiand self shadowing that violate the as-
sumption of brightness constancy. They also tend to exsthiitstical regularities at specific spatial
and temporal scales that make it difficult to find good linggsraximations. Experiments using
linear models to account for these motions [16] suggestsinett models may not be appropriate,
and they therefore remain outside the scope of the currert wo



3 Constructing Parameterized Motion Models

The construction of a linear parameterized model for a @alegr motion class involves finding
a set ofbasis flow fieldg¢hat can be combined linearly to approximate flow fields inr@ion
class. In the case of motion features, such as motion edgelsaas, we begin with the design of
an idealized, generative model. From this model we explicibnstruct an approximate basis set
using steerable filters [29, 46], yielding a basistd#erable flow fields

With complex object motions, such as mouths or bushes, nlytaozd model exists. If an
ensemble of training flow fields is available, then one carmpuseipal component analysis (PCA)
or independent component analysis (ICA) [6] to find a set gidflow fields. A similar approach
was taken by Nayegt al. [42] to model edges, bars, and corners in static images.

3.1 Models for Motion Features Using Steerable Flow Fields

First, consider the modeling of motion edges and bars liks¢hn Figure 4. The motion edge
can be described by a mean (DC) motion vectgran edge orientatiof,, and a velocity change
across the motion boundatyu. Letf(x; u;, Au, #) be the corresponding flow field over spatial
positionsx = (z,y) in a circular image windowk. Becausd(x; u, Au, ¢) is non-linear in the
feature parameters;, Au, andd, direct parameter estimation in the 5-dimensional spaitbpwt
a good initial guess, can be difficult.

As depicted in Figure 3, our approach is to approxiniéteu,, Au, §) by its projection onto a

subspace spanned by a collectiomdsasis flow fieldd,(x),
f(X; U, Au,0) ~ u(x; ) = D> ¢;bj(x). (2)
j=1

Although the basis flow fields could be learned from examp$#sguPrincipal Component Anal-
ysis, here we construsteerablesets of basis flow fields. These are similar to those learnied us
PCA up to rotations of invariant subspaces. The basis floddiate steerable in orientation and ve-
locity, and provide reasonably accurate approximatiorteeanotion features of interest, namely,
motion edges and motion bars. We first construct a basis ésplatial structure of the features.
These bases are then combined (as a tensor product) withsddragelocity to produce the basis
flow fields. This approach also provides a straightforwardhematical relationship between the
feature parameters and the model coefficients. This fambtsubsequent detection and parameter
estimation.



Figure 4. Example motion features and models for a motionoaiBnuity and a moving bar.
The parameters of the idealized models are the mean (DGlataonal velocityu,, the feature
orientationd, and the velocity change across the motion featuwe

3.1.1 Spatial Bases for Edges and Bars

A generic template for the spatial structure of a motion latauy, S(X), is given by the step edge in
Figure 5 (left). This is a mean-zero, unit amplitude stepeadghin a circular, 32 pixel diameter,
window. A circular window is used to avoid orientation anrspies in the basis set.

A steerable basis that approximates<) under 2D rotations is constructed using the method
described in [46]. This yields a set of complex-valued basigtions,b,(x), at specific angular
harmonics with wavenumbér The real and imaginary parts &f(x) form a quadrature pair, and
for convenience, we normalize the basis image$|is¢x)|| = 1. The features are then steered
(rotated) by taking a linear combination of the basis fumtdi with sinusoidal weights (steering
functions). Thus, the edge templaf&x), and rotated versions of i (x), are approximated by a
linear combination of the basis images,

Sp(X) ~ R [Z or ag(0) bk(x)] ; (3)
keK

wheref € [0, 27) is the rotation anglel is the set of angular wavenumbers used in the approxi-
mation,a(6) are the steering functions,, are real-valued weights on the different harmonics, and
R[] denotes the real-part of The weightsgy, encode the relative magnitudes of the harmonics
that best approximate the spatial structure of the edgealecthe basis imagég(x), are unitary
(orthogonal, unit norm), the weightg are equal to the inner product 8fx) andb, (x). To obtain

the best approximatiors’ contains those wavenumbers with the largest weights [4&hBbasis
function generated using this method is equal to the prooiuah isotropic radial function and a
complex-valued angular sinusoid. As a consequence, tagrsggunctions are angular harmonics,

ak(e) — efilca , (4)

wheref is the rotation angle. Finally, we are only interested inrbed part of the expression in
(3) because the templates are real-valued; thus, one clsaldeavrite (3) in terms of real-valued

7



L EREGERE

Figure 5: (left) Edge templa@(x). (right) Real and imaginary parts of the first three basigjesa

1) OHAXE

Figure 6: (left) Bar template&(x). (right) Real and imaginary parts of the first four complex-
valued basis images. The first has wavenumber zero; its maggpart is zero and not shown. In
this case the bar has a fixed width that is one quarter the tkarokthe circular window. We do
not consider bars at multiple scales in this paper.

bases and weights,
So(X) = > op (cos(kO)R[b(X)] + sin(k0)I[bk(X)]) ,
keK
whereR|[b (X)) and[b,(x)] are the real and imaginary partsipfx).

The basis set for the static edge structure includes a umifiotensity (DC) image and a set
of images at nonzero angular wavenumbers. Because thesddd-symmetric, it contains only
odd-numbered harmonics. The real and imaginary parts dirgt¢hree odd-numbered harmonics,
ignoring the DC component, are shown in Figures 5(1-6). Bymarison, the template for the
spatial structure of a bar is shown in Figure 6. The tempkteéan-zero, and the bar has an
amplitude of 1. The bar is 8 pixels wide, and the diameter efdincular windowR is 32 pixels.
The basis set for the bar is composed of even-numbered hasndhe first four of which are
shown in Figure 6 (1-7).

The quality of the approximation provided by the basis (3asily characterized by the frac-
tion of the energy inS(x) that is captured with the selected wavenumbers. The energjyei
approximation is given by the sum of squared weighgsfor wavenumbers in the approximation.
If we let K'(n) be the set of wavenumbers that correspond tasthergest values of?, then the
guality of the approximation, as a functionwofis given by

(%; ok> / (ZR s0°) - ©)

This quantity is shown in Figure 7 for the edge and the bar.htndase of the edge, the three
harmonics shown in Figure 5 account for approximately 94%efenergy in the edge template.
With the bar, the four harmonics shown in Figure 6 accounbf@ar 90% of the energy.

8
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Figure 7: Fraction of energy in the edge model (a) and the tmatein(b) that is captured in the
linear approximation as a function of the number of complakied basis functions used.
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Figure 8: Steerable basis flow fields for occluding edgep) [dow fields are depicted as images
in which the horizontal«) component of the flow is the top half, and the vertiagl ¢omponent
is the bottom half. Black indicates motion to the left or uppectively. Gray is zero motion and
white is motion to the right or down. (bottom) Basis flow fiel@s-10) depicted as subsampled
vector fields.

3.1.2 Basis Flow Fields for Motion Edges and Bars

The basis flow fields for the motion features are formed by éoimg a basis for velocity with the
basis for the spatial structure of the features. Two vectar9)” and (0, 1)7, provide a basis for
translational flow. The basis flow fields for the horizontadl aertical components of the motion

features are therefore given by

ot = ("00) - bioo = () ©

For each angular wavenumbeér, there are four real-valued flow fields. These are the real and
imaginary parts ob,(x), each multiplied by the horizontal and the vertical compusef the
velocity basis.

The real and imaginary parts of the basis flow fields for theonatdge are depicted in Figure
8(1-10). Two angular harmonics are shown, each with 4 rakied flow fields, along with the DC
basis functions that encode constant translational \tglddne can see that some of the basis flow
fields bear some similarity to nonlinear shear and exparhsiompression.

9
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Figure 9: Steerable basis flow fields for motion bars. The D&isifdow fields are equivalent to the
first two basis flow fields in the motion edge basis set.

Figure 9(3-12) show the basis flow fields for the motion barrei€igure 9(3-4) encode the
basis flow fields for wavenumbér = 0, for which only the real-part is nonzero. Figures 9(5-8)
and 9(9-12) show the real-valued basis flow fields for wavdrensk = 2 andk = 4 respectively.

Note that the basis flow fields for motion edges and bars, basedd and even wavenumbers
respectively, are orthogonal. Thus, when one wants to tbtehb features, the basis sets can be
combined trivially to form a single basis set. We demonstthem individually, and together in
the experiements shown below in Section 5.

Finally, it is also useful to note that these basis flow fieldsapproximate. With only a small
number of wavenumbers the basis flow fields span a relativetiecapproximation to a step motion
discontinuity. Second, since they approximate only th&imsineous nature of the image velocity
field, the bases flow fields do not explicitly model the pixakstiare occluded or disoccluded by the
moving feature. This results in unmodeled brightness tiaria at the feature boundaries that must
be coped with when estimating the coefficients. Our estnatpproach described in Section 4

uses robust statistical techniques for this purpose.

3.2 Learning Motion Models Using PCA

A more general way to construct a model for a particular ctdsrotions is to "learn” the basis
flow fields from a training set that contains representataraes of the class. For simple classes
such as motion discontinuities we can generate this trgis@t synthetically. For more complex
motions we need to estimate the image motion for trainingyersequences. Since training is done
off-line, we can afford to use a computationally expensigbust optical flow algorithm [12]. Of
course the optical flow technique used to create the traifiovg fields cannot be expected to
provide accurate flow estimates throughout the entireitrgiset. Rather, it is sufficient to assume
that the principal structure in the training set is chanastie of the class of motions. Although we
use principal components analysis (PCA) here, other mestfarddimensionality reduction, such
as ICA [6], might be more appropriate for some classes ofonoti

10



Let the training ensemble be a setpobptical flow fields,{f;(x)},=:.,. For images withs
pixels, each flow field contairss quantities (i.e., the horizontal and vertical elementsefftow
at each pixel). For each flow field we place thevalues into a vector by scanning the horizontal
components of the flow in standard lexicographic orderpfedd by the vertical components. This
gives usp vectors that become the columns dfsax p matrix H. For notational convenience, let
h;, thel™ column of H, correspond to the flow fielj(x) from the training set. In practice, we take
h, to bef;(x) — f(x) wheref(x) is the mean (flow field) of the training set. With optical flowtaa
the mean flow is typically close to zero everywhere sinceh witarge training set, the observed
upward motion of the mouth, for example, will roughly “catidtee downward motion.

PCA can then be used to compute a low-dimensional model éosttiucture of the flow fields.
Toward this end, the singular value decomposition (SVD}Mafan be written as

H=M2V", (7)
whereM = [my, m,, ..., m,]is a2s x p matrix. The columnsn;, comprise an orthonormal basis
for the range of, ¥ is ap x p diagonal matrix containing the singular valugs X, . . ., A, sorted

in decreasing order along the diagonal, &ffdis ap x p orthogonal matrix.
We can approximate a given colunim, of 4 by a linear combination of the firstcolumns in
M, associated with the largest singular values i3, that is,

hl%ﬁl: Zijj. (8)
7j=1

where thec; are the linear coefficients. Thesevectors,m;, comprise a basis for the subspace
that approximates the column spacefdf Because the basis vectors,, are orthonormal, the
optimal approximation tdn, in the least squares sense is obtained using the coeffitiettsqual
the projection oh; onto the basis vectors; i.e;; = h/m;, for j = 1,...,n. The error in the
approximation decreasesascreases.

Note that each column dif corresponds to a flow field, as do the columng/fofThus, ifb;(x)
denotes the flow field that correspondsrtg then, from (8), we can approximate each training flow
field as a linear combination of thebasis flow fields,

fi(x) =~ u(x;c) = Xn: ¢jbj(x), 9)

j=1

wherec = (cy, ..., ¢,)T, andu(x; c) is the approximate flow field.

11



Face region
tracked and
stabilized

‘Mouth motion
, ‘estimated relative
* to face motion

(b)

Figure 10: Modeling mouth motion. (a) A subject’s head isked using a planar model of image
motion and the motion of the mouth is estimated relative i®tkad motion. (b) Example frames
from the 3000 image training set of a person saying sevenalsyand changing facial expressions
throughout several seconds of video.
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Figure 11: (left) First 8 basis flow fields for non-rigid moutiotion. (right) Fraction of variance
from the mouth training ensemble that is captured in the m@dea function of the number of
basis flow fields. The first six basis flow fields account for agpnately 90% of the variance.

The quality of the approximation provided by the firstolumns of)M is easily characterized
as the fraction of the variance of the training set that i®anted for by the: components:

am = (L) /(%) (10)

A good approximation (i.e., whe@(n) approaches) is obtained when the singular valugs
are relatively small forj > n. If the singular values rapidly decrease to zeroj&aacreases
then@(n) rapidly increases towards and a low-dimensional linear model provides an accurate

approximation to the flow fields in the training set.

3.2.1 Example: Mouth Motion

As an example, we learn a parameterized model of mouth médioa single speaker. We col-
lected a 3000 image training sequence in which the speakezdrtbeir head, spoke naturally, and
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made repeated utterances of four test words, namely, ‘igetgant,” “track,” and “release.” As
illustrated in Figure 10, the subject’'s head was trackedsaaloilized using a planar motion model
to remove the face motion (see [15] for details). This sizdtion allows isolation of the mouth
region, examples of which are shown in Figure 10. The motfdhe@mouth region was estimated
relative to the head motion using the dense optical flow ntetlescribed in [12]. This results in a
training set of mouth flow fields between consecutive frames.

The mean flow field of this training set is computed and subtthfrom each of the training
flow fields. The mean motion is nearly zero and accounts for Nitle of the variation in the train-
ing set (.7%). The modified training flow fields are then used in the SVD cotapon described
above. Since the image motion of the mouth is highly consédi the optical flow structure in
the 3000 training flow fields can be approximated using a smatiber of principal component
flow fields. In this case91.4% of the variance in the training set is accounted for by thé $esen
components (shown in Fig. 11). The first component alonewttsdor approximately1% of the
variance. It is interesting to compare this learned basis/gle the hand-constructed basis used to
model mouth motion in [15]. The hand-constructed basisaioatl seven flow fields representing
affine motion plus a vertical curvature basis to capture mmoutvature. In contrast to the learned

basis set, the hand-constructed set accounts for@miy; of the variance in the training set.

3.3 Designing Basis Sets

It is also possible to “design” basis sets with particulaogarties. In many cases one may wish
to have a basis that spans affine motion plus some higher-dedi@mation. This may be true for
mouth motion as well as for rigid scenes. For example, weiegfthe learning method to a training
set composed of patches of optical flow (roughyx 40 sized regions) taken randomly from the
Yosemite sequence which contains a rigid scene and a moaimgra [3]. The first six basis flows
accounted for 99.75% of the variance, and they appear to &ffiae motions. To compare this
with an exact affine model, we projected all affine motion duhe training flow fields, and then
performed PCA on the residual flows fields. The affine modebawts for 99.68% of the variance
suggesting that, for this sequence and others like it, d &ifiae model is sufficient.

To construct a basis to explicitly represent affine motiarsgome non-rigid deformation from
a training set, we first construct an orthonormal set of athiasis flows,

u(x;c) =

€1+ G + C3y
s +esx+cgy |

the affine basis flowb,(x) of which are illustrated in Figure 1. We project affine sturetout of
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the training set using a Gram-Schmidt procedure [31], aed #pply PCA to the remaining flow
fields. More precisely, in vector form, I¢in; },—; ¢ denote an orthonormal basis for affine motion,
and let the original ensemble of training flow fields be expeesas(h;};-,.,. The magnitude of
the projection oh; onto the affine basis vectons; is given byc;; = h/'m;. Then, affine structure
can be subtracted out bf to produce the new training flow fieltd;, given by

6
h? = hl — ZCU m; . (11)

j=1
Finally, we perform PCA on the new training set, each flow fafld/hich is now orthogonal to the
affine basis set. We choose the firsbasis flows from this deformation basis and then construct
our basis set witlé + n flow fields in which the first six represent affine motion. We roave a
basis that is guaranteed to represent affine motion plus E@meed deformation from affine. This
process can be also be applied to orthogonal basis setstoémeaffine.

4 Direct Estimation of Model Coefficients

Given a basis set of flow fields for a particular motion class,wish to estimate the model co-
efficients from an image sequence. We then wish to use thesBctents to detect instances of
the motion classes. To detect features in static imageg lisiar parameterized feature models
(e.g., [42]), the model coefficients are obtained by conwgithe image with the basis images.
With motion models we cannot take the same approach bedagisedtion field is unknown. One
could first estimate the dense flow field using generic smasthiconstraints and then filter the
result. However, the strong constraints provided by patanzed models have been shown to
produce more accurate and stable estimates of image mb#aargeneric dense flow models [38].
Therefore we apply our new motion models in the same way tifiaeamodels have been used
successfully in the past; we make the assumption of brigistnenstancy and estimate the linear
coefficients directly from the spatial and temporal imagevagves.

More formally, within an image regior?, we wish to find the linear coefficientof a param-
eterized motion model that satisfy the brightness congtassumption,

I(x,t+1)—I(x—u(x;c),t) = 0 VXeR, (12)
whereu(x; c) is given by (1). Equation (12) states that the imabeat framet + 1 is a warped

version of the image at time
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In order to estimate the model coefficients we minimize thiewng objective function

=Y pI(x,t+1) —I(x—u(x;c), t), o). (13)

xXER

Here,o is a scale parameter ap(t, o) is a robust error function applied to the residual error
AI(x;¢) =I(X,t+1) — I(X —u(x;C),?) . (14)

Large residual errors may be caused by changes in imagdwtubat are not accounted for by
the learned flow model. Because of the discontinuous nafutreeanotion models used here and
the expected violations of brightness constancy, it is irgya that the estimator be robust with
respect to these “outliers”. For the experiments below We pé:, o) to be
2
pro) = s,
which was proposed in [30] and used successfully for flownegtiion in [12]. The parametes,
controls the shape ¢f(-, o) to minimize the influence of large residual errors on the tmtu
Equation (13) can be minimized in a number of ways includiogrdinate descent [12], ran-
dom sampling [2], or iteratively reweighted least squafies3R]. Here we use a coarse-to-fine,
iterative, coordinate descent method. To formulate aatiter method to minimize (13), it is con-
venient to first rewrite the model coefficient vector in terohgn initial guess and an updatéc.
This allows us to rewrite (13) as
E(6c;c) = > p(I(x,t+1) — I(x — u(x; c+dc),t), o). (15)
xXER
Given an estimateg, of the motion coefficients (initially zero), the goal is tstienate the update,
oc, that minimizes (15)c then becomes + 6c. To minimize (15) we first approximate it by
linearizing the residual\I(X; ¢ + dc), with respect to the update vectarto give
E@5ce) = 3 p(u(x; 6¢)'VI(x — u(x; ¢),t) + AI(x;©), o), (16)
XER
whereVI(x — u(x; ), t) denotes the spatial image gradient at timearped by the current motion
estimateu(x; c) using bilinear interpolation. Note that the brightnessstancy assumption has
been approximated by an optical flow constraint equatiohighiinear injc. Finally, note that in
minimizing (16), the search algorithm described belowdgfly generates small update vectors,
Because the objective function in (16) satisfiggc; c) = £(dc; ¢)+O(]|6c|[?), the approximation
error vanishes as the updatde, is reduced to zero.
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It is also worth noting that the gradient term in (16) doesdegiend ordc. This avoids the need
to rewarp the image and recompute the image gradient at égglofthe coordinate descent. In
fact, the image gradient in (16) can be pre-multiplied bytthsis flows fields since these quantities
will not change during the minimization @ (Jc; c). Hager and Belhumeur [32] used this fact for
real-time affine tracking.

To minimize (15) we use a coarse-to-fine control strategy witontinuation method that is
an extension of that used by Black and Anandan [12] for estngaptical flow with affine and
planar motion models. We construct a Gaussian pyramid imtfages at timeé andt + 1. The
motion coefficientsg;, determined at a coarse scdlare used in the minimization at the next finer
scale] + 1. In particular, the motion coefficients,+ dc;, from the coarse level are first multiplied
by a factor of two (to reflect the doubling of the image sizeeakl/ + 1) to produce the initial
guessc;; at levell + 1. These coefficients are then used in (16) to warp the imagmat t+ 1
towards the image at timeat levell + 1, from WhichE(écm; C.41) IS minimized to compute the
next updatéc; ;.

The basis flow fields at a coarse scale are smoothed, subshugukons of the basis flows
at the next finer scale. These coarse-scale basis vectorsienate slightly from orthogonality
but this is not significant given our optimization scheme. 8 find that it is important for the
stability of the optimization to use fewer basis flow fieldstta coarsest levels, increasing the
number of basis flow fields as the estimation proceeds fromseda fine. The basis flow fields to
be used at the coarsest levels are those that correspor@rtwajbrity of the energy in the training
set (for domain-specific models) or in the approximatiortrnodel feature (for motion features).
The flows fields used at the coarse levels are typically sneodtte., lower wavenumbers), and
therefore they do not alias or lose significant signal poweemthey are subsampled.

At each scale, given a starting estimatg; c,), we minimizeE((Sc; ¢;) in (16) using a coordi-
nate descent procedure. The partial derivativeB @ic; ¢;) with respect tajc are straightforward
to derive. When the update vector is complex-valued, aswitis our motion feature models, we
differentiateE((Sc; c;) with respect to both the real and imaginary partgaf To deal with the
non-convexity of the objective function, the robust scadeameterg, is initially set to a large
value and then slowly reduced. For the experiments beto,lowered from25v/2 to 15v/2 by
a factor 0f0.95 at each iteration. Upon completion of a fixed number of desseps (or when a
convergence criterion is met), the new estimate for the flogffients is taken to bg + Jc.
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Figure 12: Translating Disk. (a) Image of the disk and backgd (same random texture). (b)

Estimated flow field superimposed on the disk. (1-10) Re@u/eoefficient images for the motion

edge basis set. For display the responses of coefficientsspanding to each wavenumber are
scaled independently to maximize the range of gray levals/ah

4.1 Translating Disk Example

To illustrate the estimation of the model coefficients areldietection of motion discontinuities,
we constructed a synthetic sequence of a disk translatimgsi@ stationary background (Figure
12(a)). Both the disk and the background had similar frataiures, so the boundary of the
stationary disk is hard to see in a single image. The imagewas128 x 128, the disk was 60
pixels wide, and the basis flow fields were 32 pixels wide.

Optical flow estimation with a motion feature basis produaeset of coefficients for each
neighborhood in the image. Here, the model coefficients wstienated from neighborhoods cen-
tered at each pixel (so long as neighborhoods did not ovénepgmage boundary). This yields
coefficient values at each pixel that can be viewed as imagest(vo real-valued images for each
complex-valued coefficient). Figure 12(1-10) shows thé-velued coefficients that correspond
to the basis flow fields for the motion edge model in Figure B)- Figure 12(1,2) depicts co-
efficients for horizontal and vertical translation; one @afier the horizontal velocity of the disk.
Figure 12(3-10) corresponds to basis flow fields with horiaband vertical motion at wavenum-
bers 1 and 3. In these images one can see the dependencdicfateafalues on the wavenumber,
the orientation of the motion edge, and the direction of #lecity difference. As described below,
it is the structure in these coefficients that facilitatesdetection of the motion edges.
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Figure 13: Estimating mouth motion. (a,b) mouth regionsaaf tonsecutive images of a person
speaking. (c) Flow field estimated using dense optical flowhoa: (d) Flow field estimated using
the learned model with 6 basis flow fields.

4.2 Human Mouth Motion Example

Estimation of human mouth motion is challenging due to ngigity, self occlusion, and high
velocities relative to standard video frame rates. Comdide two consecutive frames from a
video sequence shown in Figure 13. Note the large deformmatd the lips, and the changes in
appearance caused by the mouth opening. This makes optiwad$timation with standard dense
flow methods difficult. For example, Figure 13(c) shows a fle@idfiestimated with a robust dense
method [12]. Some of the flow vectors differ widely from the@ighbors. In comparison, the flow
field estimated with the learned model is constrained to lypa of mouth motion, which yields
the smoother flow field in Figure 13(d). Of course, we canngtrgaich of these two flow fields is
“better” in this context; each minimizes a measure of bnglss constancy. In the following section
we will be concerned with recognition, and in that scenargowish to constrain the estimation to
valid mouth motions such as that represented by Figure 13(d)

5 Detection of Parameterized Motion Models

From the estimated linear model coefficients, we are intedes detecting and recognizing types
of motion. We first consider the detection of motion edgestzarg. Following that, we examine

the recognition of time-varying motions in the domains ofutits and people walking.

5.1 Motion Feature Detection

Given the estimated linear coefficients, we wish to detect occurrences of motion edges and
motion bars, and to estimate their parameters, namelywbeomponents of the mean velocity
u; = (uy, ), the two components of the velocity changel = (Au, Av)”, and the feature
orientationd. The linear parameterized models for motion edges and bans designed so that
any motion edge or bar can be well approximated by some lio@abination of the basis flow
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fields. But not all linear combinations of the basis flow fietdsrespond to valid motion features.
Rather, the motions features lie on a lower-dimensionaijinear manifold within the subspace
spanned by the basis flow fields. In [42], the detection prolita static features was addressed by
taking tens of thousands of example features and projettigrg onto the basis set. These training
coefficients provided a dense sampling of a manifold in thespace spanned by the basis vectors.
Given the coefficients corresponding to an image featueeclbsest point on the manifold was
found. If an estimated coefficient veciolies sufficiently close to the manifold then the parameters
of the nearest training example were taken to be the modehpeters. Alternatively, one could
interpolate model parameters over the manifold [20]. Tpigraach to detection is appropriate for
complex features where no underlying model is availabltg (the motion of human mouths [16]).
By comparison, the underlying models of motion featuregalagively simple. In these cases we
therefore solve for the feature parameters directly froenlitiear coefficients.

5.1.1 Nonlinear Least-Squares Estimation

Given an estimated flow fieldy(x; c), obtained with the robust iterative method outlined in et
4, we wish to detect the presence of a motion feature and itoast its parameter@,, Au, 6).
That is, we wish to estimate the parameters that producedtadized flow fieldf(x; u;, Au, 6),
that is closest to the estimated flow fiela(x; c). We also want to decide whether the model
is a sufficiently good fit to allow us to infer the presense @& feature. Because there are five
independent feature parameters, the orthogonal profeofid(x; u;, Au, #) onto the basis flow
fields lie on a 5-dimensional nonlinear manifold. It suffitedind the flow field on this manifold
that is closest tai(x; c).

Let u™(x; u;, Au, #) denote the projection of idealized flow fielflsc; u;, Au, ), onto the
linear subspace. Using the form of the basis flow fields in (8),and (6), one can show that
u™(x; ug, Au, #) has the form

U™ (%; U, AU 0) = U, + R | S ope ™ (Au b} (X) + Av bg(x)) : (17)
ke
Then, for a regiorz, we seek the five parameteds, Au, ) that minimize
> U™ (% up, Au, 8) — u(x;c) || (18)
xXER

To formulate the solution it is convenient to explicitly egps the estimated flow field(x; c),
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using the same notation for the basis flow fields:

ux;c) = Ug + R | D (abi(x) + Bebi(x))| , (19)

keK

whereu,,. is a 2-vector that corresponds to the coefficients assalreth the DC basis flow fields,
andoy, andg,, are the estimated (complex-valued) coefficients that spoed to the horizontal and
vertical components of the basis flow fields with wavenuniber

The basis in which bot™(x; u,, Au, #) andu(x; c) are expressed (i.e{b"(x), b? (X) }rex )
is orthogonal. Therefore, to minimize (18) it suffices to fthd feature parameters that minimize
the sum of squared differences between model coefficiemtsrenestimated coefficients. Thus,
the translational velocity is given directly y = u,.. The remaining parameterdu and#, are
found by minimizing

E,.(Au,0) = Z | (e, Br) —ake’ikQ(Au,Av) %, (20)

keK

given a sufficiently good initial guess.

The least-squares minimization enforces two constrainthe feature parameters. First, the
velocity difference,Au, must be consistent over all angular harmonics. Secondyribatation
of the motion featured, must be consistent across all of the angular harmonics atiddompo-
nents of flow. The constraint oAu is related to the magnitudes of the complex-valued model
coefficients, while the constraint ghconcerns their phase values. To obtain an initial guess for
minimizing E,,(Au, #), we first decouple these constraints. This provides a suthaftyet direct,
method for estimating and Au.

5.1.2 Direct Estimation of Velocity Change.

To formulate a constraint ohu = (Au, Av)? it is convenient to collect the complex-valued
coefficients of the model flow field in (17) into an outer prodenatrix

M = Au (akl e R0 o e*ik”a) (21)

B ( Auoy, e ™0 Auogy, e Hn? )
- )

; ; 22
Avoy, e ™0 Avoy, e Hn? (22)

wheren is the number of angular harmonicsifn and forl < j < n, letk; denote the wavenum-
bers inK with weightso,. The top row ofM contains the model coefficients for the horizontal
components of the model velocity field. The second row/€ontains the model coefficients for

the vertical components of” (x; u;, Au, 6).
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Figure 14: Translating Disk. (a) Raw orientation estimdtesn direct method. Black pixels
indicate that no estimate was possible. Intensity var@® fivhite to dark grey as orientation goes
from /2 to —n/2. (b,c) Confidence measures from velocity constraint anehtation constraint.
(d) orientation estimates masked by joint confidence measur

To obtain a set of transformed model coefficients that degetaly onAu, we then construct
A = M M*T, whereM*T is the conjugate transpoself. Because of the separability of the model
coefficients with respect tdu and#, as shown ir(21), A reduces tdo} + ...+ o} ) AuAu’,
the components of which are independent.oFor example, in the case of the motion edge, with
the estimated coefficients, a3, 31 andfjs, let

M:(%i gg), A= i (23)
If the estimated flow fieldy(x; c), were on the feature manifold, then the singular vectorcated
with the largest singular value,, of A should give the direction of the velocity. Thus, the estienat
of the velocity change)u,, is obtained by scaling this singular vectorm.

Moreover, if the estimated coefficients lie on the featuranifioéd, then the rank ofd in (23)
should be 1. This suggests that we can use the ratio of thelamgluese; > e,, to determine the
quality of the model fit. A measure of the consistency of tharested coefficients with the model
is given byr = (ex + a)/e;. Here,r is close to zero where the coefficients satisfy the congtrain
and large otherwise; is a small constant that helps to avoid instability when tsitigular values
are extremely small. We ugg, = exp[—r?] as a confidence measure derived from this constraint,
an image of which is shown for the disk sequence in Figure)14(b

5.1.3 Direct Estimation of Spatial Orientation.

Once the velocity parameters have been estimated, we cdinauigdtial estimateAU,, along with
the matrix )/ in (23) to obtain a set of transformed measurements thadraicg to the model,
depend only on the spatial structure of the motion featunepadrticular, given the true velocity
changeAu, it is easy to show from (21) that the produxti’}/ has the form

AUTM = ||Aul]? (% e M0 oy e*ikne) . (24)

n

From this it is clear that the orientati@ris available in the phase of the elements\af’)/.
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To obtain an initial orientation estimagig, we form the product = Al M, using the es-
timated velocity change\(i, and the matrix of estimated coefficients. To obtaind, from z
we divide the phase of each component@iccording to its corresponding wavenumber (taking
phase wrapping into account), and take their average. Aloupto the model, ignoring noise, the
resulting phase values should then be equal, and computaigaverage yields the orientation
estimatiord,. Figure 14(a) shows th# as a function of image position for the Disk Sequence.

The variance of the normalized phases also gives us a measti@v well the estimated
coefficients satisfy the model. For the edge model, wherg twd harmonics are used, we expect
thatA¢p = ¢ — ¢3/3 = 0 wheregy, is the phase of the componentoat wavenumberk:. As a
simple confidence measure for the quality of the model fituféidl4(c) show&)y = exp(—Ag¢?)
for the disk sequence.

5.1.4 Least-Squares Estimation and Detection

The direct method provides initial estimates of orientafipand velocity change\,, with con-
fidence measureg;, andC,. We find that these estimates are usually close to the lgasirass
estimates we seek in (20). The confidence measures can be&ousgect coefficient vectors that
are far from the feature manifold. For example, Figure 14fws orientation estimates where
C,Cy > 0.1.

Given these initial estimate8, and All,, we use a gradient descent procedure to firathd
AU that minimizeE,,(Au, #) in (20). Feature detection is then based on the squaredairtoe
minima divided by the energy in the subspace coefficierdas,?. = >, (|ax|* + |8 |*). We find
that the reliability of the detection usually improvesascreases. To exploit this, we use a simple
confidence measure of the form

C =c(P)e B/, (25)

wherec(P) = ¢~*/" andk is a positive scalar that depends on noise levels. In this s
decreases the relative ertBy P must decrease for our confidence meastitép remain constant.
Figure 15(a) shows the confidence measurgiven the least-squares estimates of the motion

edge parameters, whewe= 40. Figure 15(b) shows locations at whic¢h> 0.8, which are cen-
tered about the location of the edge. The final three imagEgjires 15 show optimal estimates
of §, Al and A whereC > 0.8. Note how the velocity differences clearly indicate theloding

and disoccluding sides of the moving disk. For these pitelsmean error i was0.12° with a
standard deviation &f.6°. The mean error il\u was—0.25 pixels/frame with a standard deviation
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Figure 15: Translating Disk. (a) Confidence meastirederived from squared error of least-
squares fit. (b) Locations wheéé > 0.8 are white. (c-e) Estimates 6f Au, Av whereC' > 0.8.

(d) M

Figure 16: Flower Garden Sequence. (a) Frame 1 of sequdndee¢overed flow. (c) Confidence
measure’. (d-f) Optimal estimates af, Au andAv whereC' > 0.8.

of 0.19. Errors inAwv were insignificant by comparison.

Figure 16 shows the detection and estimation of motion efilgesthe flower garden sequence
(an outdoor sequence with translational camera motiorg.vElocity differences at the tree bound-
ary in the flower garden sequence are as large as 7 pixelg/fréhe sign of the velocity change
in Figure 16(e) clearly shows the occluding and disocclgdiides of the tree. The orientation
estimates along tree are nearly vertical, as indicateddégtay pixels in 16(d).

Further experimental results can be found in [17], wherentiedion edge detector described
here is used to initialize a probabilistic particle filter fitetecting and tracking motion disconti-
nuities. The probabilistic method uses a higher dimensjmaalinear model, and it relies on the
linear model and the detection method described here tadgeat/with rough estimates of the
parameters of the nonlinear model. More precisely, it usesd estimates to constrain its search to
those regions of the parameter space that have the greaibabgity of containing the maximum
likelihood estimates of the velocities, orientation, awgdiion of the motion boundary.

To explore the detection of moving bars, we formed a basisysebmbining the motion bar
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Figure 17: Translating Annulus. (a) Frame 1 of sequence R@xovered flow. (c) Confidence
measure’ from LS minimization. (d-f) Optimal estimates 6f Au and Av whereC' > 0.65.

basis flow fields (Fig. 9) with the basis containing the tratish and motion edge models (Fig. 8).
The resulting set of 20 flow fields is orthogonal because tlye @hd bar basis functions contain
odd and even numbered harmonics respectively. In this tassupport of the basis flow fields is
a circular window 32-pixels wide. The bar was in the centeghefregion, with a width of 8 pixels.

To test the detection of moving bars with this basis, we fioststructed a synthetic sequence
of an annulus (width of 8 pixels) translating across a statip background to the right at 2 pix-
els/frame (see Figure 17(a-b)). The detection procedurdeistical to that for moving edges.
Figure 17(c) show§’ at the least-squares minimum, with= 50. The remaining images, Figures
17(d-f) show the optimal estimates@andAu at pixels where’ > 0.65. The fits with the motion
bar model are noisier than those with the edge model, andeveftire use a more liberal threshold
to display the results. For these pixels, the mean errénias1.0° with a standard deviation of
11.8°. The mean error il\u was—0.39 pixels/frame with a standard deviation@81. Note that
in these experiments, although the models for the edge andrbastraight, we are testing them
with curved edges and bars. The results illustrate how thiesgle models generalize.

Finally Figure 18 shows the detection and estimation of tlmion bars in outdoor image
sequence taken with a hand-held camcorder. This sequeptesda narrow tree (about 6 pixels
wide) moving in front of the ground plane. The difference @tocity is predominantly horizontal,
while the orientation of the tree is nearly vertical. Whedre thange in velocity between the tree
and ground is sufficiently large, towards the upper part etttbe, the moving bar is detected well.

5.2 Domain-Specific Experimental Results

In the case of generic motion features it was possible touatalthe performance of the basis
set with respect to an idealized optical flow model. In theeaaisdomain-specific models such
as human mouths, in which the basis set is constructed frampbes, no such idealized models
exist. Therefore, to evaluate the accuracy and stabilith@imotion estimated with these models
we consider the use of the recovered coefficients for thedtidcognition of motion events. This
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Figure 18: Small Tree Sequence. (a) Frame 1 of sequence. ofif)Jdénce measur€. (c-e)
Optimal estimates of, Au andAv whereC' > 0.65.

(©

will help demonstrate that the recovered motion is a reddenapresentation of the true optical
flow.

Below we consider domain specific models for human mouthdeggedand illustrate the use of
the recovered coefficients with examples of lip reading aatkiwg gait detection. These recog-
nition tasks will necessitate the construction of tempatratlels that capture the evolution of the
coefficients over a number of frames.

5.2.1 Non-Rigid Human Mouth Motion

Black and Yacoob [15] described a method for recognizing duracial expressions from the
coefficients of a parameterized motion model. They modédbtedface as a plane and used its
motion to stabilize the image sequence. The motion of théreyes and mouth were estimated
relative to this stabilized face using a seven parameteehfatfine plus a vertical curvature term).
While this hand-coded model captures sufficient infornmatibout feature deformation to allow
recognition of facial expressions, it it does not captueeuariability of human mouths observed
in natural speech.

To test the accuracy and stability of the learned model wéyapthe problem of lip reading
for a simple user interface called the Perceptual Brows@) [Ihe Perceptual Browser tracks the
head of a human sitting in front of a computer display and tisesubject’s vertical head motion
to control the scrolling of a window such as a web browser.

We explore the addition of four mouth “gestures” to contha behavior of the browser:

e Center: mark the current head position as the “neutral” position.

e Track: start tracking the head. In this mode the head acts like ystijck” and deviations
from the neutral position cause the page to scroll.

e Release stop head tracking. Head motions no longer cause scrolling
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Figure 19: (Top) Example training sequences of mouth matmefficients. (bottom) Temporal
models are constructed from the examples, to produce mod#laent trajectories.

e Print: print the contents of the current page.

We think of these as “gestures” in that the user does not reeeatchlize the commands but simply
makes the mouth motion associated with the words.

For training we used the 3000 image sequence described ilm®8c2.1 that contains the test
utterances as well as other natural speech and facial expnss The head location was assumed
to be known in the first frame of the sequence and the head aelsett thereafter using a planar
motion model. The mouth location relative to the head was kf®own. The first three basis
vectors (with the largest eigenvalues) were used for esitigéhe motion; as discussed in Section
3.2.1, the mean flowas not used as it accounts for significantly less varianae the first three
basis vectors.

Figure 19 shows the coefficients estimated for the uttesaimcthe training sequence by min-
imizing (13). Note that the temporal trajectories for thefficients of a single utterance produce
curves that are very similar while the trajectories for eliént utterances are distinct. Trajectory
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Figure 20: Word detection from mouth motion coefficientspftWith a test sequence, the model
coefficients are estimated between every pair of framesthieanouth model we used 3 basis flow
fields, the coefficients of which are shown for a 400 frame $eguence. (bottom) Recognition
probabilities for test words from the mouth motion (see)text

models are constructed by manually aligning the trainimyesifor the same utterance and com-
puting the mean curves for each coefficient (bottom of Fidie

Next the basis set was applied to a 400 image test sequendeich the same subject said
each of the utterances. Figure 20(top) shows the estimatdticents. Note that each time instant
corresponds to a vector of coefficients that define a flow figidHe mouth region.

Recognition is performed using a stochastic curve matchiggrithm described in [14]. The
method uses the Condensation algorithm [36] to match a sebdgl curves to an input curve in
an on-line fashion while allowing various deformations loé tmodel curves to achieve a match.
These deformations, among other things, allow us to takdl shrenges in the rate of motion into
account. While Figure 20(top) shows the input coefficieafettories, Figure 20(bottom) shows
the output of the recognition, that is, the probability otleaemporal model being recognized.
Comparing the “spikes” in this plot with the input trajects reveals that the method recognizes

the completion of each of the test utterances (see [14] fiailde
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Figure 21: Articulated human motion. The first two imagesfesen the training sequences, and
the second two are from test sequences.

Further experimental work with linear parameterized medah be found in work on modeling
appearance changes in image sequences [18]. In that wioekr lparameterized motion models
were used, in conjunction with models for other sources peapance change in image sequences,
to explain image changes between frames in terms of a mixtucauses (see [18] for more
details).

5.2.2 Articulated Motion

Like mouths, the articulated motion of human limbs can bgdawaried, and difficult to model.
Here we construct a view-based model of leg motion and use rié¢ognize walking motions.
We assume that the subject is viewed from the side (thoughppeach can be extended to cope
with other views) and that the image sequence has beeniztabilith respect to the torso. Two
training and two test sequences (Fig. 21) of subjects wglkim a treadmill were acquired with
different lighting conditions, viewing position, clotignhand speed of activity. One advantage of
motion-based recognition over appearance-based ap@®asihat it is relatively insensitive to
changes such as these.

PCA was performed on a 350-image training set. The first nasésbvectors account fO0%
of variance in the training data (see Fig. 22), and are usediiexperiments (cf. [4]). A temporal
model was constructed for a single walking cycle by manusdigmenting and aligning all the
cycles present in the training data. This temporal walkingdet is shown in Figure 23. The
motion coefficients were then estimated for the 200 imageseguence. The top two rows of
Figure 24 show the images and recovered motions at everyfizdtie. Below this is a plot of the
first four coefficients over the entire test sequence. Thal€osation-based recognition algorithm
was used to recognize the walking cycles. The peaks in therbgilot in Figure 24 correspond to
the detection of a completed walking cycle.
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Figure 23: Temporal trajectory model for walking.

6 Conclusion

Linear parameterized motion models can provide effectescdptions of optical flow. They im-
pose strong constraints on the spatial variation of thecapflow within an image region and
they provide a concise description of the motion in terms sinall number of linear coefficients.
Moreover, the model coefficients can be estimated direobiynfthe image derivatives and do not
require the prior computation of dense image motion. Thenéaork described here extends pa-
rameterized flow methods to more complex motions.

We have explored the use of linear parameterized modelptesent generic, discontinuous
motion features including occlusion boundaries and mdbans. The models are applied at every
image location in the way that current affine models are eygalpand the model coefficients are
estimated from the image in exactly the same way as affineomotefficients are computed, with
robust, coarse-to-fine optical flow techniques. Finally,hage shown how to reliably detect the
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Figure 24: Top two rows: images and estimated flow for evety Hiame in the test sequence.
Third row: Plot of the first four motion coefficients for onestesequence. Bottom row: Plot
showing the detection of completed walking cycles.

presence of a motion feature from the linear coefficientshenvdto recover the feature orientation
and the relative velocities of the surfaces. This work shomes way to extend regression-based
optical flow methods to cope with more complex features ampkH&ing to light the relationships
between static image features and motion features. We heweised this method as a means for
initializing a patrticle filter for detecting and tracking tian boundaries with a higher-dimensional
nonlinear model [17].

The framework presented here also extends linear paramestemotion models to object-
specific domains (e.g., mouth motion or human walking majomn these domains, rather than
explicitly constructing the model bases, we learn them feas of training flow fields. Principal
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component analysis is used to construct low-dimensiomaksentations of the motion classes,
the coefficients of which are estimated directly from sgatigporal image derivatives. Unlike the
motion features above, we have applied these models infepetage regions. For example, once
a head is tracked and stabilized the motion of the mouth castimated using the learned mouth
motion model. This model alignment in the image is importand it may be possible to refine
this alignment automatically (see [13]). The temporal béha of the model coefficients then
provide a rich description of the local motion informatiofo show this, we have used the time-
varying behaviour of the coefficients to construct and recgvarious simple temporal “gestures”
[14]. These include spoken words with mouth motion, and &iwglgait in the context of human
locomotion. Speech recognition from lip motion alone is ofise a very challenging task and
we have demonstrated results in a highly constrained donfairiure work should explore the
combination of motion with appearance information and audi

Future Work

In future work we plan to extend the use of linear paramegerinodels in several ways. With mo-
tion features we plan to improve the detection method wighabmbined (edge and bar) basis set
to use the coefficient behavior in both subspaces to impretection and parameter estimation.
We expect that localization can be greatly improved in theywLocalization can be further im-
proved with the inclusion of information about static imdgatures, because motion edges often
coincide with intensity edges.

A related issue concerns the fact that we have only used mtgaiures at a single scale. As
one consequence of this, we do not currently detect bars nvigdr than 8 or 10 pixels, and we
do not estimate the width of the bar. It may be desirable te le@\ge and bar models at a variety of
scales that provide better spatial resolution at fine s@aldgotentially better detection at coarser
scales. In this case we would expect that structure couldda&ed through scale, where, for
example, two edges at one scale would be detected as a bapatseicscale. Another way to
include multiple scales would be to use a multiscale wausdsis to represent optical flow [62].
From the wavelet coefficients one could detect motion edgdsars much like intensity edges
are detected from image wavelet transforms.

Currently, the coefficients of each image region are esachatdependently and it would be
interesting to explore the regularization of neighborigfticients to reduce noise and enforce
continuity along contours. However, the exploitation @ltstical dependences between events in

nearby regions may be best incorporated at a subsequeptattamalysis, like the probabilitic
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approach described in [17].

With the domain-specific motion models, we assumed that we gigen the appropriate image
location within which to apply the models. If size and shafihe actual image region is somewhat
different from training set, then one might also allow anrefileformation to warp the image data
into the subspace (cf. [13]). More generally, given a set oflais that characterize a variety of
motions in the natural world, we would like to find the appiiafg model to use in a given region;
this is related to work on object and feature recognitiomgsippearance based models [42].

A number of other research issues remain unanswered. lcearodels are particularly useful
in situations where optical flow is hard to estimate, but gs#hsituations it is difficult to compute
reliable training data. This problem is compounded by thesiswity of PCA to outliers. PCA
also gives more weight to large motions making it difficuliéarn compact models of motions
with important structure at multiple scales. Future worl explore non-linear models of image

motion, robust and incremental learning, and models of ondgxture.
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