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Abstract

We address segmentation of an image into patches that
have an underlying salient surface-roughness. Three in-
trinsic images are derived: reflectance, shading and meta-
texture images. A constructive approach is proposed for
computing a meta-texture image by preserving, equaliz-
ing and enhancing the underlying surface-roughness across
color, brightness and illumination variations. We evaluate
the performance on sample images and illustrate quantita-
tively that different patches of the same material, in an im-
age, are normalized in their statistics despite variations in
color, brightness and illumination. Finally, segmentation by
line-based boundary-detection is proposed and results are
provided and compared to known algorithms.

1. Background

Image segmentation of scenes in which man-made ob-
jects are presented in their diversity of appearance is a
challenging computer vision problem. For example, while
clothing is, perhaps, the most diverse of such objects, its
basic components can be simply reduced to: the material
of the thread (i.e., the fiber such as cotton, wool, silk, etc.),
the thickness of the thread and the particular weaving pat-
tern. Figure 1 shows images we are interested to analyze
and segment, (a) rug on a hardwood floor, (b) woman with
colorful hair, (c) wool sweater laid on a wood surface and
(d) textured painting hanging on a wall. Our objective is
to delineate regions that have a salient surface texture de-
spite significant variations in color, brightness and illumi-
nation attributes. Specifically, we seek the separation of
the rug, hair, sweater and painting. We use the term meta-
texture to convey and accentuate the underlying appearance
of rough surfaces in the image plane to differentiate from
texture that conveys the color patterns on a smooth surface
and 3D-textons that are tuned to the natural appearance of
monochromatic surface roughness under viewpoint and il-
lumination variations. These images are taken at high res-
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Figure 1. A rug on a wood floor, multi-color hair, wool sweater on
a wood surface, and textured painting on a wall (respectively).

olution (1600x1200 for the face and 4368x2912 otherwise)
to capture surface-detail.

Color and texture-based segmentation. There is a
large body of research on texture-based segmentation of
color images (e.g., [3, 5]). Color and texture features are
typically extracted separately then clustering in a joint space
is conducted. If applied to the images in Figure 1 they will
result in the identification of multiple regions due to color
or apparent texture variations and despite the similarity of
the underlying surface texture.

Material perception and 3D Textons. Adelson et al.
[1] studied the properties of materials under different illumi-
nation to determine classification by humans and study sta-
tistical texture measures. Leung and Malik [8] (also [5, 13])
proposed an approach for classifying materials based on 3D
texture attributes, 3D textons, computed over small patches
to capture local geometric and photometric properties of
monochromatic images. Recognition of different materi-
als under different lighting and viewing conditions were
shown. Note that 3D texton-based approach can be adapted
for image segmentation of Figure 1(c) since the color tex-
tured regions have clear boundaries and large sizes which
in the monochromatic image may be amenable to detec-
tion, normalization and analysis. However, Figure 1(a,b,d)
pose a challenge since the monochromatic image consists of
small regions of constant texture in Figure 1(a) and gradual
intensity changes in Figure 1(b,d). Consequently, we view
the meta-texture image proposed in this paper as a potential
input for a 3D-texton based recognition process and not as
an equivalent approach for processing image texture.

Intrinsic Images. Intrinsic images (e.g., [7, 9, 12]) aim
to reveal the underlying physical properties of a scene by es-
timating the shading (e.g., a function of lighting and surface
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normals) and reflectance (e.g., surface color) images. Intrin-
sic analysis is suitable for coarse-level images (i.e., when
surface roughness is not visible) but is less suitable for fine-
level images where surface roughness is detrimental to the
stability of the surface normal over small neighborhoods.
Intrinsic images involve scenes which arise from albedo or
color variations on smooth surfaces while Fig. 1 involves
rough surfaces with complex dependencies on color, view-
ing and illumination directions that destabilize the albedo
and color variations at fine scales. Measurement of rough
surfaces have been proposed using the Bidirectional Texture
Functions (BTF) [6] and analysis and recognition [5]. Anal-
ysis of rough surfaces in real-world images without BTF or
learned models remains open for research.

This paper is focused on the diverse appearance of real-
world rough-surfaces that defy smooth-surface assumptions
and their surface texture functions (e.g., BTF, 3D Textons)
are unknown. The paper’s contributions are characterizing
the problem, proposing a discriminative approach to derive
three intrinsic images from a color image (i.e., shading, re-
flectance, and meta-texture), proposing and developing the
concept of salient meta-texture image (MTI) via transform-
ing an image into a grey-level image in which the projected
surface roughness is preserved, equalized and enhanced
while other properties such as color, brightness variations,
etc. are normalized. This MTI is evaluated by considering
image segmentation by texture-boundary detection.

It is important to note that evaluating correctness of the
derived three intrinsic images for real-world images cannot
be done (a problem we share with existing work on intrin-
sic images). Moreover, the MTI is derived from intertwined
imaging process and attributes of the scene. For example,
in Figure 1(c) meta-textures of red regions appear less sharp
than the yellow regions simply due to the imaging process
while their surface-roughness are presumably equal. Never-
theless, we provide empirical results that quantify the per-
formance with respect to similarity within an image and ef-
fectiveness of segmentation.

2. Approach

We propose that three derived images be computed,
shading, reflectance and surface-roughness. The MTI is
a logical extension of intrinsic images [9, 12] to account
for surface-roughness. Deriving these images by extend-
ing known formulations of intrinsic images is not possible
since surface-roughness violates the basic assumptions of
derivative-based approaches (e.g., [9, 12]). Instead, we pro-
pose a patch-based approach to extract intrinsic informa-
tion that is specifically-suited for image segmentation using
surface-roughness appearance.

We define an MTI to be a grey-scale image derived from
a color image so that scene surface-roughness similarity
translates into similarity of the image texture regardless of

reflectance (e.g., color, absorbence, etc.), lighting (e.g., in-
tensity, location) and shading (e.g., slant of the smooth sur-
face as long as roughness detail remains visible) variations
within the image (note image-centricity as opposed to inter-
image variations in [5]).

2.1. Homogeneous Patch Selection

We first convert the RGB color image into (Hue, Satu-
ration, Value) (HSV) space. The proposed transformations
are applied to homogeneous patches that share underlying
image attributes. We employ a conservative approach for
patch delineation since some over-segmentation typically
has little negative impact because the statistics of multiple
patches sharing an underlying structure are similar. Each
pixel, Pi,j , in HSV space will belong to a single patch R.
Given a seed patch R with a single pixel Pi,j , a connected
component expansion of R under constraints on the values
PH

i,j , PS
i,j , PV

i,j can be performed. A pixel, Pk,l, 8-connected
neighbor of a pixel, Pi,j , is added to R if

|P H
i,j − P

H
k,l| < Hthr; |P S

i,j − P
S
k,l| < Sthr; |P V

i,j − P
V
k,l| < Vthr (1)

where Hthr = 10, Sthr = 40, and Vthr = 50. These values
were determined empirically and are applied to all images
in this paper while taking into consideration the nonlinearity
of the HSV space.

A two-pass algorithm for segmenting the image into
patches is implemented. In the first pass each pixel is al-
lowed to be part of as many patches as it conforms to, while
in the second the optimal patch of a pixel is chosen based on
the patch sizes and similarity of the pixel to patch statistics.
Typically, thousands of patches are found in an image.

2.2. Deriving Intrinsic Images

We define our variants of intrinsic images that are re-
lated but not equal to existing formulations of intrinsic im-
ages. The visual information of a patch R is divided into
shading, reflectance and meta-texture. Reflectance conveys
the pure substrate color of the patch (i.e., independent of
surface roughness and shading). Shading reflects illumina-
tion of the smooth-surface of the patch (i.e., excluding its
surface roughness). Meta-texture reflects illumination vari-
ations due to surface roughness. Meta-texture and shading
are related since both involve illumination interaction with
scene surfaces, but they differ in capturing high and low 2D
frequencies (if combined they equal shading in [12]).

Since reflectance is independent of surface-roughness
and smoothness of R it can be computed by combining the
hue at each point of the patch (or the average hue) with the
average saturation and brightness over R (i.e., recombined
(H,Savg,Vavg)). Since shading reflects illumination varia-
tions of the smooth-surface of R it can be computed by dis-
carding the high-frequencies (by low-pass filtering) of the
brightness V since these stem from surface roughness. It is
critical to note that we associate shading with the maximum



amplitude of the light waveform as opposed to the combined
RGB amplitudes of light waveforms (i.e., intensity; com-
pare V and intensity images of the blanket in Fig. 2). We
argue (in contrast to [7, 9, 12]) that since shading reflects
the interaction of the illumination source with the surface
normal it should reflect the maximum amplitude measured
in light wavelengths discarding weaker wavelengths. The
basis is that assuming scene material disperses all wave-
lengths in the same direction, and given homogeneity of
the patch, all wavelengths reflect equally the surface shad-
ing with the maximum wavelength amplitude providing the
strongest signal. Finally, meta-texture reflects the removal
of the smooth-surface variations from the intensity image
of the patch (e.g., by a high-pass filtering). Note that either
of the intensity image (i.e., the combined wavelengths) or
V can be used since surface-roughness is typically equally
conveyed unless one of the RGB channels is saturated in
which case the intensity image preserves the local texture
while V eliminates it. Normalizing values across patches is
necessary for the shading and MTI images (for now we use
simple mean normalization).

Figure 2 shows the intrinsic images derived for three
sample images: T-shirt and blanket with folds, and a wool
sweater over an arm. The images convey color variations,
surface-roughness and shading of smooth surface deforma-
tions. For each image, the input, intensity, V , reflectance,
shading and MTI are shown, respectively. The reflectance
images show a completely flat image with surface smooth-
ness and roughness removed, the shading images show the
global surface deformation revealed by the illumination and
the MTIs show the surface-roughness excluding the shad-
ing information. Notice that patch boundary artifacts ap-
pear in the meta-texture and shading images. The bottom
right side images show the reflectance and shading images
as computed by [12]. Note that the shading images con-
found smooth and rough-surface information in comparison
to our algorithm for separating them.

In the rest of the paper we focus on the MTI since it holds
a great potential for image segmentation.
2.3. Deriving a Meta-texture Image

The derivation of MTI can be improved by adopting
a construction-based approach. The objective is to trans-
form a patch into a grey-scale patch in which surface-
roughness is preserved, equalized and enhanced where
needed. Preservation ensures that the meta-texture is not
weakened. Equalization means that patches with the same
underlying surface-roughness but perhaps different color,
brightness or illumination are transformed into a similar
meta-texture. Finally, where surface-roughness appears
weak due to color, brightness or illumination it is enhanced
(i.e., amplified) to reflect its prototypical appearance. Fig-
ure 3 shows these requirements computed for a colorful cot-
ton sweater. Preservation reveals the meta-texture of the

Figure 2. From top to bottom (raster-wise) input, intensity, V , re-
flectance, shading and MTI for each image followed by the respec-
tive reflectance and shading images computed by [12].

Figure 3. Achieving the requirements of MTI, preservation, equal-
ization and enhancement on a cotton sweater.

red region patch. Equalization shows that the meta-texture
is equalized across the five shades of green and blue. En-
hancement is shown for the black region where the surface
roughness is revealed, enhanced and equalized with respect
to other meta-textures. The MTI of these patches are similar
and thus could easily be classified into the same material.

We first consider the distribution of brightness values
within homogeneous patches. Figure 4 (top two rows)
shows sample patches and histograms of the brightness val-
ues of each patch. The patches were taken from the bright-
ness images, V , of the rug, hair and wool and cotton sweater
images, respectively (shown in figure 1 and 3). The his-
tograms of the brightness coarsely fit a Gaussian distribu-
tion which is not surprising since the patches are assumed
to be homogeneous. Each patch, however, has a distribution
determined by its underlying texture.

The MTI of homogeneous patches should satisfy:
Preservation. The histogram of the brightness values of

the MTI should qualitatively preserve the distribution of the
brightness values.
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(a) (b) (c) (d)
Figure 4. From top to bottom rows, (1) original brightness, (2)
histogram of the brightness values, (3) MTI using γ = 1 (4) his-
togram of the brightness values for MTI γ = 1, (5) MTI using
γ = 0.8 (6) histogram of the brightness values for MTI γ = 0.8.
(a) rug (b) hair colored with different shades (c) a wool sweater
and (d) cotton sweater.

Equalization. The mean of each meta-texture patch
should be close to the means of other patches. Let
MTImean denote the desired mean of MTI.

Enhancement. The standard deviation of any patch
should be close (not necessarily equal) to other patches. Let
MTIsd be the desired standard deviation of MTI.

Let Rmean, Rsd denote the average and standard devi-
ation of the histogram of the brightness values of pixels
of R. Let P v denote the brightness values of R. MTI
will be constructed as a grey-scale image that takes on val-
ues between (Vmin, Vmax) = (0, 255). Let MTImean =
(Vmax + Vmin)/2 which places the mean brightness at the
center of the range of brightness values. The brightness
value, P v

i,j , of a pixel (i, j), is transformed into a value,
PMTI

i,j , in the MTI,

P
MT I
i,j = ((P

v
i,j − P

D
i,j − Rmean)/(3Rsd)) · ((Vmax − Vmin)/2) + MTImean

(2)

where PD
i,j is a floating point value of pixel (i, j) in the im-

(a) (b) (c) (d)
Figure 5. From top row to bottom, (1) the P D image which is a
smoothed version of the deviation from the average brightness of
the patch (2) the MTI with P D = 0 and γ = 1, (3) the MTI with
P D and γ = 1, (4) the MTI with P D = 0 and γ = 0.8, (5) the
MTI with P D and γ = 0.8. (a) rug (b) hair colored with different
shades (c) a wool sweater and (d) cotton sweater

age PD. PD is the Gaussian smoothed deviation of the
brightness values of pixels in R from the average brightness
in the patch R,

P
D

= S(P
v0 ) and P

v0
i,j = P

v
i,j − Rmean (3)

where S is a Gaussian smoothing function. Since we ap-
proximate the brightness histogram as a normal distribution,
the area within ±3Rsd approximately covers 99.73% of the
points. It should be noted that this normal-distribution as-
sumption is an approximation and points beyond ±3Rsd are
treated as being at ±3Rsd.

In Figure 4, the third and fourth rows show the trans-
formation of the four different patches into a MTI using
Equation 2 and the histograms of the values of the MTIs.
The appearance of the underlying textures is preserved, en-
hanced and equalized. Quantitatively, the means and stan-
dard deviations of the MTIs are close and thus readily reflect
roughness differences between these patches.

Equation 2 can be modified to enhance the contrast



of the underlying brightness distribution by nonlinear am-
plification of the brightness instead of the linear scaling.
A gamma-correction model accentuates brightness differ-
ences within the patch,

P
MT I
i,j = sign(P

G
i,j) · |P G

i,j |γ · ((Vmax − Vmin)/2) + MTImean (4)

where PG
i,j = (P v

i,j − PD
i,j − Rmean)/(3Rsd), the function

sign is 1 if PG
i,j is positive and −1 otherwise, and |PG

i,j | is
the absolute value of PG

i,j . It is easy to see that if γ = 1
then Equation 4 is equal to Equation 2. If γ < 1 then PG

i,j

values closest to Rmean are enlarged more than values far
from Rmean and contrast is enhanced within the patch. In
Figure 4, the last two rows show the images and histograms
of brightness distributions for γ = 0.8. The enhancement
in texture contrast is readily visible. The graphs in Figure
4 (bottom row) show that at the extreme low and high end
of the brightness the number of pixels in the histogram have
increased (the rising tails of both ends). This occurs since
more points are shifted to the edges of the brightness range.
Similarly, the mean area, which is the center of the transfor-
mation lost points that have moved farther to increase the
brightness contrast. It is worth noting that γ = 0.8 does
not preserve the normal distribution but it provides greater
discrimination power. If a smaller γ is used these phenom-
ena increase and overall it is not a desirable outcome since
it can excessively distort the histogram. If γ > 1 a sup-
pression of the texture contrast occurs (not relevant to our
research objective). In the rest of the paper we use γ = 0.8
in all experiments.

As defined in Equation 3, PD is a Gaussian-smoothed
image of the normalized brightness values (i.e., average in-
tensity subtracted from the brightness value). In our exper-
iments we use a Gaussian smoothing filter of 41 units. PD

removes low-frequency brightness differences (e.g., shad-
ing) within a patch whether these were a result of material
brightness or illumination differences. In Figure 5, top row,
the value of PD is shown as a grey-scale image although
the actual values are positive and negative numbers. The
second and fourth rows show the MTI images for PD = 0,
while the third and fifth rows show the MTI images using
the actual PD (γ = 1 and γ = 0.8, respectively).
2.4. Evaluation of MTI Transform

We compare MTI to histogram equalization and low-
frequency elimination and normalization using Fourier
Transform. The latter approach eliminates the lowest-
frequencies and normalizes values. Figure 6 shows the
original V patches in (a) columns, MTIs computed using
Equation 4 in (b) columns, histogram equalized patches (c)
columns, and low-frequency eliminated and normalized im-
ages in (d) columns. The MTIs achieve far more uniformity
of texture appearance within images and between images.
Brightness variations due to illumination differences, ma-
terial creases, or other anomalies are removed or reduced

Figure 7. Left, a colorful region in the sweater and its MTI. Right,
the distance between the textures on the sides of A is larger than
the distances between the textures on the sides of B.
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Figure 8. The top row shows the histogram of brightness values for
5 wool (left) and cotton (right) patches, the bottom graphs show
the histograms for the MTI values.

significantly so that the underlying texture appearance is
uniform. Note that the low-frequency removal weakens the
sharpness of the texture. Robustness of MTI to linear trans-
formations can be shown mathematically but is omitted.

Figure 7(left) shows MTI of an area taken from Figure 3.
The MTI reflects appropriately the underlying salient weave
of the sweater. Very small regions such as the black/yellow
interweaved thread conform to the general texture pattern.
The meshing of patch boundaries remains an open chal-
lenge; Boundary pixels are occasionally a blend of two col-
ors, and depending on whether they are associated with one
patch or another (or form a third patch) their meta-texture
value will be different.

While it is not possible to evaluate MTI with respect to
the ideal MTI, we can compare the similarity of MTIs of
different patches in which surface roughness is presumed to
be equal. Two sets of five patches of different colors were
selected from both the wool and cotton sweaters (Fig. 1 (c)
and Fig. 3). Fig. 8 shows the histograms of the original
brightness and the MTI values (top and bottom row, respec-
tively) for the wool and cotton sweater patches. An ideal
transformation should bring each set of 5 patches to per-
fect alignment (if the original patches were indeed of iden-
tical surface-roughness). The MTI comes close to this ideal
given likely intrinsic differences between the patches.



(a) (b) (c) (d) (a) (b) (c) (d)
Figure 6. Columns show (a) the original V image, (b) the MTI of the patches using Equation 4, (c) the transformed patches using histogram
equalization, (d) the low-frequency removal and normalized filtering.

3. Segmentation of the Meta-texture Image

There is a variety of approaches for computing texture
features [1, 3, 5, 8, 10, 13]. We adopt the Gabor wavelets
method (details can be found in [10]). We re-pose the image
segmentation problem as a line-based texture-boundary de-
tection. We make a critical assumption that the true bound-
ary between two different textures coincides with the max-
imum distance between textures on the sides of the bound-
ary. In Figure 7(right) it means that the distance between
the textures on the sides of line A is larger than the distance
between the textures on the sides of any line such as B.
The basis for this assumption is that the difference between
the textures is maximized when the textures are as differ-
ent from each other as possible. However, there are situa-
tions in which the assumption is violated since textures are
not normally as distinct as illustrated. Note that since line-
boundaries are computed, inaccuracies and jagged bound-
aries appear at curved boundaries. The texture-boundary
detection consists of the following:

Coarse texture representation. Given the MTI, we
compute all NxN texture descriptors for a sliding square
window (in raster scan). The vertical regions do not overlap,
while the horizontal regions overlap by N/2. We compute
the Gabor wavelet features for each square rotated between
±75 degrees by 15 degrees steps.

Coarse texture-boundary detection. We evaluate the
evidence of a texture boundary between any two neighbor-

ing squares (both horizontal and vertical neighbors). If the
minimum distance between their texture features (across
orientations) exceeds T then a boundary is assumed to exist.

Fine texture-boundary detection. Since the boundary
between textures is unlikely to fall at the edge between ad-
jacent squares it is necessary to estimate the optimal line lo-
cation and orientation of the boundary. The optimal bound-
ary is the one that maximizes the distance between the tex-
tures on its sides even when all image orientations are con-
sidered. In practice, a scan of all possible boundary loca-
tions and orientations (±45) is done, where for each candi-
date boundary the minimum distance between the textures
on the two sides of the candidate boundary is computed,
and the maximum of these minima is selected as the opti-
mal boundary. To reduce computations, this process is done
raster-wise skipping N rows for vertical line boundaries and
N columns for horizontal line boundaries.

The texture-boundary detection is followed by delin-
eation of regions of uniform texture and merger of re-
gions that have similar textures. Delineation of regions
is achieved by connecting proximate edges texture bound-
aries. Two regions are merged if the distance between their
textures is less or equal than T + 3.
4. Results

Two parameters need to be set in the image segmentation
approach: the window size for texture feature extraction is
N = 128 and the distance threshold between texture fea-



Figure 9. MTI (right), segmentation of MTI (middle) and segmen-
tation using [4] [11] [2], top to bottom respectively.

tures determines whether two texture regions should have a
line-boundary detected, T = 7 (N = 64 and T = 6 for the
lower resolution images).

Figures 9,10 show MTIs (right column), segmentation
using MTI (center column), and the output of three seg-
mentation algorithms, Cour et al [4], Martin et al [11] and
Arbelaez [2] (top to bottom, respectively, left column). The
top image shows hair with highlights and shaded regions.
The MTI clearly reveals the hair as having a uniform tex-
ture and accentuates the texture of the fleece. The cotton
sweater, rug and painting show near optimal segmentation
(including texture differences within the wood). The multi-
colored pillow is in front of the textured painting and to its
left the cream color fabric has visible texture while the other
colorful pillow region (on the left edge) has no meta-texture
visible at this resolution. The segmentation result is rea-
sonable as the pillow, painting, wall and cream-color fabric
are properly segmented. Finally, three outdoor images show
appropriate segmentation of a lion, hippopotamus, and veg-
etation where surface detail is visible. The reflection of hip-
popotamus appears close to its surface roughness and there-
fore it was merged with the hippopotamus, also the vegeta-
tion is segmented by the size of leaves not color.

In Figure 10, the roughness of the sweaters is sufficient
for segmentation. Parts of the background scenes mostly
lack surface detail so the segmentation typically follows
color edges (except the carpet in the third image where
surface roughness is visible). Parts of the sweater are not
merged properly since the 3D creases of the texture are not
accounted for by our texture analysis algorithm. The sec-
ond image from the top is notable since the background and
foreground share the same colors, and the top of the pants at
the waist is separated despite having the same white color.

The experiments suggest that MTI-segmentation pro-
vides better results than the three approaches since surface-
roughness saliency transcends edges and color attributes
which lead to over-segmentation in other approaches.
Our approach suffers from inaccurate boundary detection
brought about by using a single cue, line-boundary con-
straint and sparse boundary search. These are not core is-
sues and can be remedied in future research. The absence of
roughness detail leads to reflecting differences in color and
as a result the segmentation suffers.

5. Summary

We addressed the problem of normalizing surface-
roughness of image patches. A transformation of an im-
age into MTI was proposed by the constraints: preservation,
equalization and enhancement of meta-texture properties of
patches across color, brightness or illumination differences.
The MTI was used as input to a texture boundary seg-
mentation process and experiments on realistic scenes were
reported with respect to three state-of-the-art algorithms.



Figure 10. MTI (right), segmentation of MTI (middle) and seg-
mentation using [4] [11] [2], top to bottom respectively.

While our results are better than these algorithms, they suf-
fer from jagged and inaccurate line-boundaries since we use
only surface-roughness (as opposed to edges and color and
texture) and we approximate the boundary by lines and per-
form sparse computation to reduce complexity.

Acknowledgment. We thank the authors of [2, 4, 11, 12]
for facilitating comparing our results to their work.

References

[1] E.H. Adelson, Y. Li and L. Sharan. Image statistics
for material perception. Journal of Vision, Volume 4,
Number 8, Abstract 123, 2004. 1, 6

[2] P. Arbelaez. Boundary Extraction in Natural Images
Using Ultrametric Contour Maps. Workshop on Per-
ceptual Organization in Comp. Vision, 2006. 7, 8

[3] J. Chen, T. N. Pappas, A. Mojsilovic, B. E. Rogowitz.
Adaptive perceptual color-texture image segmenta-
tion, Tr. Im. Processing, 14, 2005, 1524-1536. 1, 6

[4] T. Cour, F. Benezit, J. Shi. Spectral Segmentation with
Multiscale Graph Decomposition. CVPR, 2005, 1124-
1131. 7, 8

[5] O. Cula and K.J. Dana, 3D Texture recognition using
bidirectional feature histograms, IJVC, (59)1, 2004,
33-60. 1, 2, 6

[6] K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J.
Koenderink. Reflectance and texture of real world
surfaces. ACM Transactions on Graphics, 18(1):134,
1999. 2

[7] G.D. Finlayson, M.S. Drew, and C. Lu. Intrinsic Im-
ages by Entropy Minimization. ECCV 2004, 582-595.
1, 3

[8] T. Leung J. Malik. Representing and recogniz-
ing the visual appearance of materials using three-
dimensional textons. IJCV, 43(1),2001. 1, 6

[9] E.H. Land and J.J. McCann, Lightness and Retinex
Theory. J. of Optical Soc. Am., 61, 1971, 1-11. 1, 2, 3

[10] B.S. Manjunath and W.Y. Ma. Texture features for
browsing and retrieval of image data. PAMI, (18)8,
1996, 837-842. 6

[11] D. Martin, C. Fowlkes, J. Malik. Learning to Detect
Natural Image Boundaries Using Local Brightness,
Color and Texture Cues, TPAMI 26 (5) 530-549. 7, 8

[12] M.F. Tappen, W.T. Freeman, and E.H. Adelson.
Recovering Intrinsic Images from a Single Image.
TPAMI, (27)9, 2005, 1459-1472. 1, 2, 3, 8

[13] M. Varma and A. Zisserman. Classifying images of
materials: Achieving viewpoint and illumination in-
dependence. ECCV, 2002, 3, 255–271. 1, 6


