
Tracking Rigid Motion using a Compact-Structure ConstraintYaser Yacoob and Larry DavisComputer Vision LaboratoryUniversity of MarylandCollege Park, MD 20742AbstractAn approach for tracking the motion of a rigidobject using parameterized 
ow models and acompact-structure constraint is proposed. Whilepolynomial parameterized 
ow models have beenshown to be e�ective in tracking the rigid mo-tion of planar objects, these models are inappro-priate for tracking moving objects that change ap-pearance revealing their 3D structure. We extendthese models by adding a structure-compactnessconstraint that accounts for image motion that de-viates from a planar structure. The constraint isbased on the assumption that object structure vari-ations are limited with respect to planar object pro-jection onto the image plane and therefore can beexpressed as a direct constraint on the image mo-tion. The performance of the algorithm is demon-strated on several long image sequences of rigidlymoving objects.1 IntroductionTracking a moving object in an image sequence is afundamental capability of a vision system. Trackingcan be de�ned as the process of identifying the region,Rt+1, at time t + 1 in image I(x; y; t + 1) that corre-sponds to a known region, Rt, at image I(x; y; t) andestimating the transformation that mapsRt into Rt+1.Recent research on object tracking can be divided intothe following categories:� Tracking using a foreground-background segmenta-tion process [8, 10, 15]. These approaches typicallyemploy models that capture properties of the fore-ground object or the background (e.g., color, mo-tion, shape, silhouette) and then apply them to eachimage to delineate the regions of interest. These ap-proaches typically do not directly estimate a trans-formation between the tracked regions in consecutiveimages.� Tracking using an optical-
ow formulation that ac-counts for brightness movement [3, 13, 17]. Thisformulation employs the brightness constancy con-straint to estimate the instantaneous change of the

object region between consecutive images. Thisbrightness constancy is typically coupled with mod-els for prototypical motions of the object [17].� Tracking using appearance-based recognition of ob-ject views [4, 6, 11], where the appearance of theobject from prototypical views is learned o�-line.Then, tracking is posed as a local search in the im-age for a region that best matches a familiar objectappearance under a smooth motion constraint.� Tracking using 3D motion and structure models[7, 12]. These approaches exploit information aboutthe geometry of the object and the imaging parame-ters of the scene acquired through direct estimationor learning. Then, tracking is posed as estimationof the object motion while employing the structureinformation to account for changes in object views.In this paper we propose a hybrid approach thatcombines the economy and e�ectiveness of parameter-ized 
ow models with a structure-compactness con-straint that seeks to explain image motion di�erencesby global structure variations with respect to a pla-nar rigid structure. We show that structure variationcan be posed as a constraint on the optical 
ow in theimage. Then, we illustrate how this constraint can beused in tracking and motion estimation in image se-quences of rigid objects in view-variant motions. Wedemonstrate our approach on several long image se-quences of objects in motion and contrast the perfor-mance of our approach with parameterized 
ow track-ing based on a planarity assumption.2 Compact Object Tracking Model2.1 ObjectiveVisual tracking marks an image region, Rt+1 of imageI(x; y; t + 1), as corresponding to region, Rt of imageI(x; y; t), based on a relation T . The estimation of Ttypically employs models of brightness values, 2D or3D motion, rigidity, imaging geometry or scene struc-ture.Figure 1 shows four frames from a long sequence ofa rotating box and the enclosed regions that would be



produced by an ideal tracker. The top row shows twoimages that are 5 frames apart in which the box rota-tion reveals a new surface that was not visible in theinitial image. The tracker should be able to mark theexpanded region as being part of the box. In contrast,the bottom row shows two images that are 5 framesapart in which the box rotation conceals a side of thebox. In this case, even though it might be predictedthat the dotted area in Figure 1(d) should contain atransformed instance of part of the box in Figure 1(c),the tracker should realize that the surface segment hasbecome occluded and adapt the tracked region to re-
ect its disappearance.We make the following assumptions to design thetracker:� the tracked object is moving rigidly,� the global illumination is constant throughout thesequence (the object surface may change orientationrelative to the camera; therefore, local illuminationmay vary over time),� the object structure is compact (to be de�ned be-low),Our algorithm starts with a given initial region andemploys the above assumptions to compute the succes-sive regions of the object, a planar object transforma-tion that captures the relationship between consecutiveregions, and additions/deletions of points to the objectregion between consecutive regions to capture appear-ance changes. The tracker is based on approximatinga compact object by a 3D plane and depth variationof points from this plane. This approximation allowsus to compute upper and lower bounds on the image
ow of points in the object region, and therefore canbe employed as a criterion for determining if pointscorrespond to object points or non-object points. Theadvantage of this criterion is that it approximates si-multaneously the 3D motion and structure and thussupports identifying corresponding and added/deletedregions.In order to compute added/deleted regions we ex-amine the object region boundary where appearancedi�erences occur. Object motions that involve self-occlusions do not a�ect the tracked region. However,if holes exist (e.g., tracking a rotating doughnut) theadditions/deletion analysis must also be applied overthe interior of the region.2.2 PreliminariesThe diameter, D, of a 3D rigid object, O, is the maxi-mum distance between any two surface points P1; P2.De�nition 1: A view of a 3D rigid object, O, is calledD0-compact if
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(b)Figure 1: Illustration of object region addi-tion/deletion for a rotating box. The upper and lowertwo images are 5 frames apart.1. D is the diameter of O.2. R is the greatest distance between the camera centerand any visible point on O's surface, and3. DR � D0Our goal is to track an object through any sequenceofD0-compact views. The notion of aD0-compact viewis clearly related to the typical qualitative assumptionthat an object is \far" from the camera. This has beenemployed in various ways to overcome the non-linearityof perspective projection (i.e.,D0 is assumed to be verysmall or close to zero). However, we consider here scenegeometry with strong perspective in which 0 < D0 � 1.De�nition 2: Let L be a plane passing through O.A view of O is DL0-plane-compact if for every visiblesurface point P of O, if1. d is the distance of P from the camera center,2. d0 is the distance of P from L along the line of sightthrough P ( d0 = jjP PLjj where PL is the intersec-tion point of the line of sight through P with L),then d0d+d0 � DL0.Our tracking algorithm will approximate the visi-ble surface of O with a plane L and then track theplane as long as views remain DL0-plane-compact (infact the plane will be slowly adapted over time so thatthe sequence of D0-compact views remain DL0-plane-compact). Typically, for views that are D0 and DL0-plane-compact, DL 0 < D0Consider a DL0-plane-compact view of an object.The quantity jjP jjjjPLjj = jjPLjj�jjP;PLjjjjPLjj is the ratio be-tween the actual point distance from the camera and
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Object Image RegionFigure 2: The motion and geometry of the camera.the planar point distance from the camera. This ra-tio satis�es 1 � jjP;PLjjjjPLjj � 1 � DL0 and thereforejjP jj � (1�DL0)jjPLjj which is a property that will beexploited in the 
ow model.In the following sections we will show that the DL0-plane-compactness is a valuable property that enablesobject region tracking based on a traditional brightnessconstancy assumption and error minimization of pointmotion with respect to the DL0-plane-compactnessconstraint.2.3 Motion and Structure ModelWe employ the standard conventions [14] for represent-ing the spatio-temporal variation of the optical 
ow asthe camera moves through a static scene (equally ap-plicable to object motion with a stationary camera).Assume a camera moving in a static scene with in-stantaneous 3D translational velocity (Tx; Ty; Tz) androtational velocity (
x;
y;
z) relative to an externalcoordinate system �xed with respect to the camera. Atexture element P in the scene with instantaneous co-ordinates (X;Y; Z) will induce an optical 
ow vector(u; v) where u and v are the horizontal and verticalinstantaneous velocitiesu = 
xxy � 
y(1 + x2) + 
zy � (Tx � Tzx)=Zv = 
x(1 + y2) �
yxy �
zx� (Ty � Tzy)=Z (1)Here, p = (x; y) are the image coordinates of (X;Y; Z)relative to a coordinate system in which the positive Zis aligned with the line of sight of the camera (see Fig-ure 2). Assume that the object is a plane that satis�esthe equation Z = A + BX + CY ; Then, its perspec-tive projection is given by 1Z = � + �x + 
y where� = 1A , � = �BA , and 
 = �CA . It is well known [1] thatthe 
ow measured over the projected region, R, of theplane can be modeled by an eight parameter model,u(x; y) = a0 + a1x+ a2y + a6x2 + a7xyv(x; y) = a3 + a4x+ a5y + a6xy + a7y2 (2)where a0 = �
y � �Tx a4 = �
z + �Ty

a1 = �Tz + �Tx a5 = �Tz + 
Tya2 = 
z + 
Tx a6 = ��Tz � 
ya3 = 
x � �Ty a7 = �
Tz + 
xThese eight parameters are estimated by pooling themotion of the points in R into an overconstrained sys-tem. Consider now an image point x = (xn; yn) 2 Rthat corresponds to an object point not on the plane,i.e. with actual depth Zn that is unequal to the plane-constrained depth Zp. The 
ow at x is predicted by theplanar model in Equation 2 as (up; vp). If the transla-tion in depth is not zero then the plane-induced 
owwill typically be di�erent from the actual 
ow. Weseek to model how the actual 
ow (un; vn) in the im-age is related to the plane-induced 
ow (up; vp). FromEquation 1 we know that the actual 
ow satis�esun = 
xxnyn � 
y(1 + xn2) + 
zyn � (Tx � Tzxn)Znvn = 
x(1 + yn2) �
yxnyn � 
zxn � (Ty � Tzyn)Zn (3)while the planar-induced 
ow is given byup = 
xxnyn �
y(1 + xn2) + 
zyn � (Tx � Tzxn)Zpvp = 
x(1 + yn2)� 
yxnyn � 
zxn � (Ty � Tzyn)Zp (4)The di�erence between the actual and plane-induced
ow is given byun � up = (Tx � Tzxn)( 1Zp � 1Zn ) = (Tx � Tzxn) 1Zp (1 � 1r )vn � vp = (Ty � Tzyn)( 1Zp � 1Zn ) = (Ty � Tzyn) 1Zp (1� 1r ): (5)where Zn = rZp. If 0 < r < 1 then this distanceto P is less than the planar distance, while if 1 < rthe distance to P is greater than the planar distance.Equation 4 can be rewritten asup = uprot � uptransvp = vprot � vptrans (6)where the uprot; vprot denote the rotation-induced horizontal and vertical 
ow components anduptrans; vptrans the translation-induced horizontal andvertical 
ow components of the planar motion. Com-puting uptrans; vptrans requires recovering the motionparameters of the plane. We employ the closed formsolution proposed by [16] to recover the actual motionparameters from the estimated parameters a0; :::; a7.This solution recovers two dual solutions for the mo-tion parameters. However, one of these solutions leadsto negative depth and is thus eliminated.



Equation 5 describes the range of image 
ows as anobject point deviates from planarity. To track an ob-ject through a sequence of DL0-planar-compact viewswe must determine for each point in the tracked region(and its dilated boundary) if its 3D rigid motion modeland deviation from the planar constraint correspond tothe image 
ow.Determining the value of DL0 is critical to Equation5, and it is directly related to the compactness of theobject views. Consider two positive numbers rmin <1; and 1 < rmax satisfying 8 i rminZpi < Zpi <rmaxZpi. Let r = max(1�rmin; rmax�1). If we assumethat the object views are r-planar-compact then we canset DL 0 = 1 � r and employ Equation 5 to track theregion and adapt it to appearance changes.2.4 Brightness Constancy ConstraintDe�neM(x) = � 1 x y 0 0 0 x2 xy0 0 0 1 x y xy y2 � ;A = � a0 a1 a2 a3 a4 a5 a6 a7 �Tsuch that F(u; v) = F(x;A) = M(x)A represents theplanar 
ow model described above (where x = (x; y)).The brightness constancy assumption for the objectregion states thatI(x; t) = I(x �M(x)A; t+ 1); 8x 2 R; (7)where I is the image brightness function and t repre-sents time. Taking the Taylor series expansion of theright hand side, simplifying, and dropping terms above�rst order givesrI � (M(x)A) + It = 0; 8x 2 R; (8)where rI = [Ix; Iy] and the subscripts indicate partialderivatives of image brightness with respect to the spa-tial dimensions and time. To estimate the parametersA we minimize the error termE = Xx2R �(rI � (M(x)A) + It; �); (9)for some error norm � where � is a scale parameter (seeGeman-McClure [9]).The error term in Equation 9 divides the points inthe region R, as well as the rest of the image into thoseconforming to the planar motion model (i.e., small er-ror) and those that violate it (large error). Points withlarge errors can result from brightness constancy viola-tions, imaging noise or non-planarity. In the followingwe propose a criterion for determining if the violationis due to non-planarity that doe not violate the planar-compactness of views.

The DL 0-planar-compactness of object views can beused to estimate the error of Equation 8 at a point pnthat has an error greater than a maximumerror Emax.From Equation 8,E(pn) = abs(upIx + vpIy + It) > Emax (10)where (up; vp) have been computed from the planarmodel. Equation 5 provides bounds for the actual 
owof pn based on the DL0-planar-compactness assump-tion. Speci�cally, for a DL0-compact view, the range ofthe actual 
ow is bounded by (un1; vn1) and (un2; vn2)(from Equations 5 and 6)un1 = up + uptrans(1� 11�DL 0 )vn1 = up + vptrans(1� 11�DL 0 ) (11)un2 = up + uptrans(1� 11 +DL 0 )vn2 = up + vptrans(1� 11 +DL 0 ) (12)and corresponding errors,E1 = un1Ixn + vn1Iyn + Itn (13)E2 = un2Ixn + vn2Iyn + Itn (14)The values of E1 and E2 can be compared to the valueof Emax resulting in the following cases1. If (E1 > Emax and E2 > Emax) or if (E1 < �Emaxand E2 < �Emax) then the DL0-planar compactnessof the object views fails to explain the point bright-ness motion in accordance with the estimated planarmotion and the allowed structure variation.2. If (E1 > 0 and E2 > 0) and (E1 < Emax or E2 <Emax) then either (1 � DL0; 1 + DL0) will providea minimum error at min(E1; E2) and therefore thepoint can be attached to the object region.3. If (E1 < 0 and E2 < 0) and (E1 > �Emax or E2 >�Emax) then either (1 �DL0; 1 +DL0) will providea minimum error at max(E1; E2) and therefore thepoint can be attached to the object region.4. If (0 < E1 and 0 > E2) or (0 > E1 and 0 < E2) thenthe minimum error is achieved at the zero crossingalong the line de�ned by the points (1 � DL0; E1)and (1 + DL0; E2) and therefore the point can beattached to the object region.The DL0-planar-compactness assumption provides abasis for adding/deleting points in the image to the re-gion of interest while relying on the structure variationmodel to predict and explain brightness movement inconsecutive images.



3 Computation DetailsThe computational aspects of the proposed trackingapproach follow, generally, the algorithm proposed byBlack and Anandan [2] for planar motion estimation.The estimated parameters of the planar models arethen used to determine how points in the image aremoving with respect to the model. We focus on pointswithin a small band b (in the following experimentsb = 9 pixels) on either inside or outside of the bound-ary of the object region. This choice is motivated bythe observation that object motion leads to most dras-tic appearance changes at the boundary of the objectregion while interior regions change more gradually;therefore, point addition/deletions are most importantat the boundary. We consider those points with anerror larger than Emax in this region. Using the DL0-planar-compactness assumption the bound on allow-able image 
ow are computed and used to calculateE1 and E2. Then, as described in the previous sec-tion, if the point complies with the planar model plusDL0-planar-compactness it is added to the object re-gion, otherwise, it becomes a non-object point.The above procedures are accompanied by a coarse-to-�ne computation that allows us to deal with largemotions. The estimated region and the motion param-eters at the coarsest level are used to warp the imageusing the planar and DL0-planar-compactness models.Then, the new image is used at the �ner level to esti-mate the residual motion and the process is repeated.4 Experimental ResultsIn this section we show experiments of tracking objectsbased on the planar-compactness assumption. In theseexperiments we compare the performance of a planartracker to the proposed planar-compactness tracker. Itis assumed that an initial rectangle around the object ismanually chosen at the �rst frame. Similar parameterswere used for all sequences except for the compactnessparameter. That was set to DL0 = 0:5 for the hat andDL0 = 0:8 for the box due to its short distance fromthe camera. The objects are hand carried and moved;therefore, the hand usually satis�es the same motionand planar-compactness of the object and is tracked aswell.Figure 3 shows a few frames from a 150 frames se-quence of a hand-held box that is rotated about 180�in depth. The views of the box vary considerably overthe sequence. The e�ects of perspective in this sceneis clearly visible (see frames 50 and 100). The sec-ond row shows the tracking of the box using the pla-nar model. The accuracy of the tracking quickly de-grades as the planarity of the object is violated. Incontrast, the third row shows the planar-compactness

tracking. Here, the object is well tracked over the se-quence with occasional boundary points tagging along(for a few frames at a time). Figure 4 provides twosets of images (two frames each) that show the addedand deleted points during tracking (the �rst row showsadded points and the second row shows deleted points,see also Figure 1). The frames showing added pointsdemonstrate that many points are added at the leftboundary of the box where a new surface is becom-ing visible. The frames showing deleted points indi-cate that many points are deleted at the right bound-ary of the box where the surface is gradually disap-pearing. Notice that in all frames points are sparselyadded/deleted around the boundary due to large 
owerrors resulting from the derivative estimates that in-volve both object and boundary neighborhoods. Fig-ure 6 shows several of the eight motion parameters thatare computed using the planar and planar-compactnesstracking. The columns show (left to right) the param-eters a0 and a3, divergence (a1 + a5) and out-planerotations a6 and a7.Figure 5 shows a few frames from a 300 frames se-quence of a hand-held hat that is rotated in depth.Despite the complexity of the hat structure and ap-pearance all its parts are tracked quite well for theduration of the sequence.Finally, Figure 7 illustrates a complex experimentwith two objects rotating in depth around their center.The objects are a box and a gourd that are placed tocreate neighboring regions in the image. The induced
ow due the objects rotations is qualitatively similarbut quantitatively di�erent due to depth variation ofeach object points. In this experiment track each ob-ject separately during its motion while minimizing theoverlapping of regions due to similary in motion. Itshould be noticed that at times (i.e., instantaneously)the 
ow created by the objects' motionsmay not re
ectsigni�cant structure di�erence (e.g., very small transla-tion in depth), which naturally leads to merging pointsof the two objects. Also, since the box is farther away,its structure information is less pronounced. In Figure7 the edge of the gourd is not tracked well around frame110 since the motion was quite large (20 pixels/frame)so that the di�erential framework is ine�ective.5 DiscussionTracking of rigidly moving objects is a fundamental vi-sion problem that has been studied extensively. Mostof the proposed approaches have involved a-priori ac-quisition of scene-speci�c information about the objectstructure, scene geometry or appearance. Our objec-tive has been to minimize a-priori knowledge about thetracked object and scene since most real-world objectsexhibit rich structural and surface texture variations



26 50 100 149Figure 3: Selected frames from an image sequence of a rotating box, and the planar tracking (middle row) andplanar+structure-compactness tracking (bottom row)
15 100 200 299Figure 5: Selected frames from an image sequence of a rotating hat, and the planar tracking (middle row) andplanar+structure-compactness tracking (bottom row)



31 50 90 110Figure 7: Selected frames from an image sequence of simultaneous rotation of a box and gourd, with di�erence indepth and the planar tracking (middle row) and planar+structure-compactness tracking (bottom row)
44 46108 109Figure 4: Selected frames illustrating the addi-tion/deletion of points for the rotating box boundary(�rst and second rows, respectively).
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7)Figure 6: Graphs for the rotating box parameters a0; a3(left, solid and dashed, respectively), divergence (cen-ter) and yaw and pitch a6; a7 (solid and dashed, respec-tively) for planar and planar+structure-compactnesstracking (upper and lower rows, respectively).that are quite challenging to model and recover.We proposed a structural-compactness constraint forobject tracking. This compactness was de�ned with re-spect to a 3D plane which made it possible to exploitthe power of parameterized 
ow models. It was shownthat this compactness translates into a constraint thatmakes it possible to model the resulting variation ofoptical 
ow relative to the 3D planar structure with-out computing exact structure or 3D motion. Theconstraint on the range of optical 
ow can be used



to determine if image brightness motion is consistentwith a single object model, thereby facilitating addi-tion/deletion of points to the object region over time.Although the basis of computation is relative to a3D planar model the object need not have an actualdominant plane. The error minimization of the planarmotion model converges to a virtual plane (i.e., a so-lution always exists due to the error minimization for-mulation). In unreported animation of the accuracy ofthe 
ow estimation (which cannot be shown in printedform) we found that for the tested objects the motionof a virtual plane was very well estimated.The de�nition of planar-compactness combines twoindependent components: the intrinsic object struc-ture and the imaging geometry (speci�cally distancebetween the object and camera). It is well known thatobject motion will appear planar if the distance to theobject is much larger than the compactness parameterD (see Section 2.2). In this case the object will be zero-planar-compact. If the object is planar then even atsmall distances it will be zero-planar-compact. There-fore, it is only when the object is non-planar but closeto the camera that the planar-compactness parameter,DL0, becomes important.Our experiments indicate that an accurate compact-ness parameter is not necessary. Since the compactnessparameter is dependent on the distance of the objectfrom the camera (an unknown quantity in the reportedexperiments) a conservative value of DL0 was used. Ifa rough depth estimate of the object is available (e.g.,from stereo), then a tighter compactness parametercould be used. In the experiments we demonstratedthat no prior modeling or knowledge of the object isneeded beyond the compactness parameter. As a re-sult, a wide variety of 3-D shapes can be tracked.References[1] Adiv G. Determining three-dimensional motionand structure from optical 
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