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Abstract

An approach for tracking the motion of a rigid
object using parameterized flow models and a
compact-structure constraint is proposed. While
polynomial parameterized flow models have been
shown to be effective in tracking the rigid mo-
tion of planar objects, these models are inappro-
priate for tracking moving objects that change ap-
pearance revealing thewr 3D structure. We extend
these models by adding a structure-compactness
constraint that accounts for image motion that de-
viates from a planar structure. The constraint is
based on the assumption that object structure vari-
ations are limited with respect to planar object pro-
jection onto the image plane and therefore can be
erpressed as a direct constraint on the image mo-
tion. The performance of the algorithm is demon-
strated on several long tmage sequences of rigidly
moving objects.

1 Introduction

Tracking a moving object in an image sequence is a
fundamental capability of a vision system. Tracking
can be defined as the process of identifying the region,
R'*1 at time ¢ + 1 in image I(x,y,t + 1) that corre-
sponds to a known region, R', at image I(z,y,t) and
estimating the transformation that maps R? into R'*!.
Recent research on object tracking can be divided into
the following categories:

e Tracking using a foreground-background segmenta-
tion process [8, 10, 15]. These approaches typically
employ models that capture properties of the fore-
ground object or the background (e.g., color, mo-
tion, shape, silhouette) and then apply them to each
image to delineate the regions of interest. These ap-
proaches typically do not directly estimate a trans-
formation between the tracked regions in consecutive
images.

e Tracking using an optical-flow formulation that ac-
counts for brightness movement [3, 13, 17]. This
formulation employs the brightness constancy con-
straint to estimate the instantaneous change of the

object region between consecutive images. This
brightness constancy is typically coupled with mod-
els for prototypical motions of the object [17].

e Tracking using appearance-based recognition of ob-
ject views [4, 6, 11], where the appearance of the
object from prototypical views is learned off-line.
Then, tracking is posed as a local search in the im-
age for a region that best matches a familiar object
appearance under a smooth motion constraint.

e Tracking using 3D motion and structure models
[7, 12]. These approaches exploit information about
the geometry of the object and the imaging parame-
ters of the scene acquired through direct estimation
or learning. Then, tracking is posed as estimation
of the object motion while employing the structure
information to account for changes in object views.

In this paper we propose a hybrid approach that
combines the economy and effectiveness of parameter-
ized flow models with a structure-compactness con-
straint that seeks to explain image motion differences
by global structure variations with respect to a pla-
nar rigid structure. We show that structure variation
can be posed as a constraint on the optical flow in the
image. Then, we illustrate how this constraint can be
used in tracking and motion estimation in image se-
quences of rigid objects in view-variant motions. We
demonstrate our approach on several long image se-
quences of objects in motion and contrast the perfor-
mance of our approach with parameterized flow track-
ing based on a planarity assumption.

2 Compact Object Tracking Model
2.1 Objective

Visual tracking marks an image region, R‘*! of image
I(z,y,t + 1), as corresponding to region, R' of image
I(x,y,t), based on a relation 7. The estimation of 7
typically employs models of brightness values, 2D or
3D motion, rigidity, imaging geometry or scene struc-
ture.

Figure 1 shows four frames from a long sequence of
a rotating box and the enclosed regions that would be



produced by an ideal tracker. The top row shows two
images that are 5 frames apart in which the box rota-
tion reveals a new surface that was not visible in the
initial image. The tracker should be able to mark the
expanded region as being part of the box. In contrast,
the bottom row shows two images that are 5 frames
apart in which the box rotation conceals a side of the
box. In this case, even though it might be predicted
that the dotted area in Figure 1(d) should contain a
transformed instance of part of the box in Figure 1(c),
the tracker should realize that the surface segment has
become occluded and adapt the tracked region to re-
flect its disappearance.

We make the following assumptions to design the
tracker:

e the tracked object is moving rigidly,

e the global illumination is constant throughout the
sequence (the object surface may change orientation
relative to the camera; therefore, local illumination
may vary over time),

e the object structure is compact (to be defined be-
low),

Our algorithm starts with a given initial region and
employs the above assumptions to compute the succes-
sive regions of the object, a planar object transforma-
tion that captures the relationship between consecutive
regions, and additions/deletions of points to the object
region between consecutive regions to capture appear-
ance changes. The tracker is based on approximating
a compact object by a 3D plane and depth variation
of points from this plane. This approximation allows
us to compute upper and lower bounds on the image
flow of points in the object region, and therefore can
be employed as a criterion for determining if points
correspond to object points or non-object points. The
advantage of this criterion is that it approximates si-
multaneously the 3D motion and structure and thus
supports identifying corresponding and added/deleted
regions.

In order to compute added/deleted regions we ex-
amine the object region boundary where appearance
differences occur. Object motions that involve self-
occlusions do not affect the tracked region. However,
if holes exist (e.g., tracking a rotating doughnut) the
additions/deletion analysis must also be applied over
the interior of the region.

2.2 Preliminaries

The diameter, D, of a 3D rigid object, O, is the maxi-
mum distance between any two surface points Py, Ps.

Definition 1: A view of a 3D rigid object, O, is called
D' -compact if
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Figure 1: Mlustration of object region addi-
tion/deletion for a rotating box. The upper and lower
two images are 5 frames apart.

1. D is the diameter of O.

2. Ris the greatest distance between the camera center
and any visible point on O’s surface, and

D
3. 2<p

Our goal is to track an object through any sequence
of D'-compact views. The notion of a D’-compact view
is clearly related to the typical qualitative assumption
that an object is “far” from the camera. This has been
employed in various ways to overcome the non-linearity
of perspective projection (i.e., D' is assumed to be very
small or close to zero). However, we consider here scene
geometry with strong perspective in which 0 < D’/ < 1.

Definition 2: Let L be a plane passing through O.
A view of O is Dr'-plane-compact if for every visible
surface point P of O, if

1. d is the distance of P from the camera center,

2. d’ is the distance of P from L along the line of sight
through P ( d’ = ||P Pr|| where Pr is the intersec-
tion point of the line of sight through P with L),

then #Id, < Dr'.

Our tracking algorithm will approximate the visi-
ble surface of O with a plane L and then track the
plane as long as views remain Dy’-plane-compact (in
fact the plane will be slowly adapted over time so that
the sequence of D'-compact views remain Dy’-plane-
compact). Typically, for views that are D’ and D'~
plane-compact, Dr’ < D'

Consider a Dy’-plane-compact view of an object.

. P P|£||P,P"
The quantity |||L’LH|| =l ||||P|i’ I

is the ratio be-
tween the actual point distance from the camera and



D/ -compact object

Figure 2: The motion and geometry of the camera.
the planar point distance from the camera. This ra-

L

tio satisfies 1 + Hlﬁlelll < 1+ Dr’ and therefore
[|P|| < (14 Dr")||PE|| which is a property that will be
exploited in the flow model.

In the following sections we will show that the Dp'-
plane-compactness i1s a valuable property that enables
object region tracking based on a traditional brightness
constancy assumption and error minimization of point
motion with respect to the Djy’-plane-compactness
constraint.

2.3 Motion and Structure Model

We employ the standard conventions [14] for represent-
ing the spatio-temporal variation of the optical flow as
the camera moves through a static scene (equally ap-
plicable to object motion with a stationary camera).
Assume a camera moving in a static scene with in-
stantaneous 3D translational velocity (73,7,,T.) and
rotational velocity (2, €, ;) relative to an external
coordinate system fixed with respect to the camera. A
texture element P in the scene with instantaneous co-
ordinates (X,Y, 7) will induce an optical flow vector
(u,v) where u and v are the horizontal and vertical
instantaneous velocities

u=Qry—Qy(1+ xz) +Qy— (Ty —Tox)/Z
v:Qx(l—i—yz)—anjy—sz—(Ty—sz)/Z (1)

Here, p = (#,y) are the image coordinates of (X,Y, 7)
relative to a coordinate system in which the positive 7
is aligned with the line of sight of the camera (see Fig-
ure 2). Assume that the object is a plane that satisfies
the equation 7 = A + BX 4 CY’; Then, its perspec-
tive projection is given by % = a + fz + vy where
o= %, 8= _,TB’ and v = _,TC' It is well known [1] that
the flow measured over the projected region, R, of the
plane can be modeled by an eight parameter model,

u(z,y) ao + a1z + asy + agz’ + aray
v(e,y) = as + asx + asy + agry + ary’ (2)
where

ag = —Qy — ol as = —Q, + G471,

ay = ol + 1y as = o, +~1
as = Q, ++v71, ag = —031, — €y

az =, — oy a7 = =T, + Q

These eight parameters are estimated by pooling the
motion of the points in R into an overconstrained sys-
tem. Consider now an image point x = (2, yn) € R
that corresponds to an object point not on the plane,
1.e. with actual depth 7, that is unequal to the plane-
constrained depth Z,. The flow at x is predicted by the
planar model in Equation 2 as (up,vp). If the transla-
tion in depth is not zero then the plane-induced flow
will typically be different from the actual flow. We
seek to model how the actual flow (w,,vy,) in the im-
age is related to the plane-induced flow (u,, v,). From
Equation 1 we know that the actual flow satisfies

= Qg — (14 2,7) 4 Dy, — 20

vn = Qo(l+yn”) = Quanyn — Lo — (T@,—Ziszn) (3)

while the planar-induced flow is given by

wp = Qoznyn — L+ 2,7) + Ly, — W

vp = QL+ yn?) — Qzpyn — Loy — (Ty_Ziszn) (4)
P

The difference between the actual and plane-induced
flow is given by

1 1 1
n =ty = (T = Tt (5 = =) = (T = Tetg) (1 = )
14 n 14
1 1 1
o=ty = (Ty = To) (- = ) = (T, = Togm) (1 = )
14 n 14

where 7, = vZ,. If 0 < r < 1 then this distance
to P is less than the planar distance, while if 1 < r
the distance to P is greater than the planar distance.
Equation 4 can be rewritten as

rot trans

Up — vprot _ vptrans (6)

where  the w,"*",v,"°" denote the

induced horizontal and vertical flow components and
u, " v, 7975 the translation-induced horizontal and
vertical flow components of the planar motion. Com-
puting u, """ v, requires recovering the motion
parameters of the plane. We employ the closed form
solution proposed by [16] to recover the actual motion
parameters from the estimated parameters aq, ..., a7.
This solution recovers two dual solutions for the mo-
tion parameters. However, one of these solutions leads
to negative depth and is thus eliminated.

rotation-



Equation 5 describes the range of image flows as an
object point deviates from planarity. To track an ob-
ject through a sequence of Dy’-planar-compact views
we must determine for each point in the tracked region
(and its dilated boundary) if its 3D rigid motion model
and deviation from the planar constraint correspond to
the image flow.

Determining the value of D’ is critical to Equation
5, and 1t is directly related to the compactness of the
object views. Consider two positive numbers r,;, <
1, and 1 < rpqq satisfying V4 rmmZpi < sz’ <
PmacZp . Let 7 = max(1—rmin, 'mac—1). If we assume
that the object views are r-planar-compact then we can
set Dy’ = 1 &+ r and employ Equation 5 to track the
region and adapt it to appearance changes.

2.4 Brightness Constancy Constraint
Define

. 1 2z y 0 0 0 22 =zy
M) = 00 0 1 2 v zy o |’
T
A = [ao ai as asz a4 Az dg a7]

such that F(u,v) = F(x; A) = M(x)A represents the
planar flow model described above (where x = (z, y)).
The brightness constancy assumption for the object
region states that

I(x,t)=I(x— M(x)A,t+1), Vx€R, (7)

where [ is the image brightness function and ¢ repre-
sents time. Taking the Taylor series expansion of the
right hand side, simplifying, and dropping terms above
first order gives

VI (M(x)A)+ 1, =0, ¥x € R, (8)

where VI = [I, I,] and the subscripts indicate partial
derivatives of image brightness with respect to the spa-
tial dimensions and time. To estimate the parameters
A we minimize the error term

E=7% p(VI-(M(x)A)+ I, 0), (9)

XeR

for some error norm p where o is a scale parameter (see
Geman-McClure [9]).

The error term in Equation 9 divides the points in
the region R, as well as the rest of the image into those
conforming to the planar motion model (i.e., small er-
ror) and those that violate it (large error). Points with
large errors can result from brightness constancy viola-
tions, imaging noise or non-planarity. In the following
we propose a criterion for determining if the violation
is due to non-planarity that doe not violate the planar-
compactness of views.

The D;'-planar-compactness of object views can be
used to estimate the error of Equation 8 at a point p”
that has an error greater than a maximum error £™%".
From Equation 8§,

E(p") = abs(uply +vp Iy + I;) > E™ (10)

where (u?,vP) have been computed from the planar
model. Equation 5 provides bounds for the actual flow
of p” based on the Dr’-planar-compactness assump-
tion. Specifically, for a Dr'-compact view, the range of
the actual flow is bounded by (u,t, v,t) and (u,?, v, ?)
(from Equations 5 and 6)

1
unl =, 4 uptrans(l _ - DL/)
1
Unl = Up + Uptrans(l — 1_7DL/) (11)
2 trans 1
Un” = Up + Up (1_1+DL/)
rans 1
vnzzup—l—vpt (1- 1+DL/) (12)
and corresponding errors,
E' = w," " + v, [, + " (13)
E? = up,? L" + v, L, + LY (14)

The values of E' and E? can be compared to the value

of K™ resulting in the following cases

1. If (E' > E™* and E? > E™) or if (E' < —E™%
and E? < —E™%) then the Dp’-planar compactness
of the object views fails to explain the point bright-
ness motion in accordance with the estimated planar
motion and the allowed structure variation.

2. If (E' > 0 and E? > 0) and (E! < E™* or E? <

E™3Y then either (1 — Dz, 14 Dg’) will provide
a minimum error at min(E!, E?) and therefore the
point can be attached to the object region.

3. If (B <0 and E? < 0) and (E! > —E™% or E? >

—E™a®) then either (1 — Di’, 1+ D") will provide
a minimum error at max(E?, E?) and therefore the
point can be attached to the object region.

4. (0 < E*and 0 > E?) or (0 > E' and 0 < E?) then

the minimum error is achieved at the zero crossing
along the line defined by the points (1 — Dr’, E')
and (1 + D', E?) and therefore the point can be
attached to the object region.

The Dr'-planar-compactness assumption provides a
basis for adding/deleting points in the image to the re-
gion of interest while relying on the structure variation
model to predict and explain brightness movement in
consecutive images.



3 Computation Details

The computational aspects of the proposed tracking
approach follow, generally, the algorithm proposed by
Black and Anandan [2] for planar motion estimation.

The estimated parameters of the planar models are
then used to determine how points in the image are
moving with respect to the model. We focus on points
within a small band & (in the following experiments
b = 9 pixels) on either inside or outside of the bound-
ary of the object region. This choice is motivated by
the observation that object motion leads to most dras-
tic appearance changes at the boundary of the object
region while interior regions change more gradually;
therefore, point addition/deletions are most important
at the boundary. We consider those points with an
error larger than E™% in this region. Using the Dy ’-
planar-compactness assumption the bound on allow-
able image flow are computed and used to calculate
E'Y and E?. Then, as described in the previous sec-
tion, if the point complies with the planar model plus
Dr'-planar-compactness it is added to the object re-
gion, otherwise, it becomes a non-object point.

The above procedures are accompanied by a coarse-
to-fine computation that allows us to deal with large
motions. The estimated region and the motion param-
eters at the coarsest level are used to warp the image
using the planar and Dy’-planar-compactness models.
Then, the new image is used at the finer level to esti-
mate the residual motion and the process is repeated.

4 Experimental Results

In this section we show experiments of tracking objects
based on the planar-compactness assumption. In these
experiments we compare the performance of a planar
tracker to the proposed planar-compactness tracker. It
is assumed that an initial rectangle around the object is
manually chosen at the first frame. Similar parameters
were used for all sequences except for the compactness
parameter. That was set to Dy’ = 0.5 for the hat and
D;’ = 0.8 for the box due to its short distance from
the camera. The objects are hand carried and moved;
therefore, the hand usually satisfies the same motion
and planar-compactness of the object and is tracked as
well.

Figure 3 shows a few frames from a 150 frames se-
quence of a hand-held box that is rotated about 180°
in depth. The views of the box vary considerably over
the sequence. The effects of perspective in this scene
is clearly visible (see frames 50 and 100). The sec-
ond row shows the tracking of the box using the pla-
nar model. The accuracy of the tracking quickly de-
grades as the planarity of the object is violated. In
contrast, the third row shows the planar-compactness

tracking. Here, the object 1s well tracked over the se-
quence with occasional boundary points tagging along
(for a few frames at a time). Figure 4 provides two
sets of images (two frames each) that show the added
and deleted points during tracking (the first row shows
added points and the second row shows deleted points,
see also Figure 1). The frames showing added points
demonstrate that many points are added at the left
boundary of the box where a new surface is becom-
ing visible. The frames showing deleted points indi-
cate that many points are deleted at the right bound-
ary of the box where the surface is gradually disap-
pearing. Notice that in all frames points are sparsely
added/deleted around the boundary due to large flow
errors resulting from the derivative estimates that in-
volve both object and boundary neighborhoods. Fig-
ure 6 shows several of the eight motion parameters that
are computed using the planar and planar-compactness
tracking. The columns show (left to right) the param-
eters ag and as, divergence (a1 + as) and out-plane
rotations ag and ar7.

Figure 5 shows a few frames from a 300 frames se-
quence of a hand-held hat that is rotated in depth.
Despite the complexity of the hat structure and ap-
pearance all its parts are tracked quite well for the
duration of the sequence.

Finally, Figure 7 illustrates a complex experiment
with two objects rotating in depth around their center.
The objects are a box and a gourd that are placed to
create neighboring regions in the image. The induced
flow due the objects rotations i1s qualitatively similar
but quantitatively different due to depth variation of
each object points. In this experiment track each ob-
ject separately during its motion while minimizing the
overlapping of regions due to similary in motion. It
should be noticed that at times (i.e., instantaneously)
the flow created by the objects’ motions may not reflect
significant structure difference (e.g., very small transla-
tion in depth), which naturally leads to merging points
of the two objects. Also, since the box is farther away,
its structure information is less pronounced. In Figure
7 the edge of the gourd is not tracked well around frame
110 since the motion was quite large (20 pixels/frame)
so that the differential framework is ineffective.

5 Discussion

Tracking of rigidly moving objects is a fundamental vi-
sion problem that has been studied extensively. Most
of the proposed approaches have involved a-priori ac-
quisition of scene-specific information about the object
structure, scene geometry or appearance. Qur objec-
tive has been to minimize a-priori knowledge about the
tracked object and scene since most real-world objects
exhibit rich structural and surface texture variations



Figure 3: Selected frames from an image sequence of a rotating box, and the planar tracking (middle row) and
planar+structure-compactness tracking (bottom row)
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Figure 5: Selected frames from an image sequence of a rotating hat, and the planar tracking (middle row) and
planar+structure-compactness tracking (bottom row)
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Figure 7: Selected frames from an image sequence of simultaneous rotation of a box and gourd, with difference in
depth and the planar tracking (middle row) and planar+structure-compactness tracking (bottom row)
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Figure 4:
tion/deletion of points for the rotating box boundary
(first and second rows, respectively).

Selected frames illustrating the addi-

Figure 6: Graphs for the rotating box parameters ag, as
(left, solid and dashed, respectively), divergence (cen-
ter) and yaw and pitch as, a7 (solid and dashed, respec-
tively) for planar and planar+structure-compactness
tracking (upper and lower rows, respectively).

that are quite challenging to model and recover.

We proposed a structural-compactness constraint for
object tracking. This compactness was defined with re-
spect to a 3D plane which made it possible to exploit
the power of parameterized flow models. It was shown
that this compactness translates into a constraint that
makes 1t possible to model the resulting variation of
optical flow relative to the 3D planar structure with-
out computing exact structure or 3D motion. The
constraint on the range of optical flow can be used




to determine if image brightness motion is consistent
with a single object model, thereby facilitating addi-
tion/deletion of points to the object region over time.

Although the basis of computation is relative to a
3D planar model the object need not have an actual
dominant plane. The error minimization of the planar
motion model converges to a virtual plane (i.e., a so-
lution always exists due to the error minimization for-
mulation). In unreported animation of the accuracy of
the flow estimation (which cannot be shown in printed
form) we found that for the tested objects the motion
of a virtual plane was very well estimated.

The definition of planar-compactness combines two
independent components: the intrinsic object struc-
ture and the imaging geometry (specifically distance
between the object and camera). Tt is well known that
object motion will appear planar if the distance to the
object 1s much larger than the compactness parameter
D (see Section 2.2). In this case the object will be zero-
planar-compact. If the object is planar then even at
small distances it will be zero-planar-compact. There-
fore, it is only when the object is non-planar but close
to the camera that the planar-compactness parameter,
D;', becomes important.

Our experiments indicate that an accurate compact-
ness parameter is not necessary. Since the compactness
parameter 1s dependent on the distance of the object
from the camera (an unknown quantity in the reported
experiments) a conservative value of Dr’ was used. If
a rough depth estimate of the object is available (e.g.,
from stereo), then a tighter compactness parameter
could be used. In the experiments we demonstrated
that no prior modeling or knowledge of the object is
needed beyond the compactness parameter. As a re-
sult, a wide variety of 3-D shapes can be tracked.
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