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ow models from image sequences is proposed.The temporal-
ow models are represented as a setof orthogonal temporal-
ow bases that are learnedusing principal component analysis of instanta-neous 
ow measurements. Spatial constraints onthe temporal-
ow are also developed for modelingthe motion of regions in rigid and coordinated mo-tion. The performance of these models is demon-strated on several long image sequences of rigidand articulated bodies in motion.1 IntroductionTracking the image motion of a human body in actionis an exceptionally challenging computer vision prob-lem. Even ignoring the �ne structure of the hands,and assuming that the feet are rigidly connected tothe calves and the hands to the forearms, a humanbody is composed of ten basic parts, many of whichcan move in quite independent ways. Natural humanmotions, such as walking, kicking, etc., are, of course,very constrained by factors including motion symme-tries, static and dynamic balance requirements, grav-ity, etc. A physics-based approach to analysis of humanmotion might involve locating and tracking the limbsand extremities of the body under control of a mecha-nism that optimizes the tracking with respect to knownphysical constraints. This turns out to be a ratherdaunting enterprise, due to the di�culties of identify-ing body parts in natural video imagery and the chal-lenges of developing e�cient computational methodsfor modeling and enforcing such physical constraints.An alternative approach is to develop \appearance-based" models for human motion, and use these mod-els to control tracking of human motion. Examples�The support of the Defense Advanced Research ProjectsAgency (ARPA Order No. C635), the O�ce of Naval Research(grant N000149510521) is gratefully acknowledged.

of this approach include [3, 9]. The main challengesto such appearance-based methods are viewpoint de-pendence, dealing with appearance variability (due tochanges in clothing, shadowing, body size and propor-tions between individuals), recognition in the presenceof occlusion, etc.In this paper we show how low-dimensionalappearance-based models of articulated human motioncan be recovered from observations of such motions,and how these models can be used to track the mo-tions of other humans performing similar motions. Wepresent some experimental evidence that suggests thatthe number of viewpoint-dependent appearance mod-els that one would need to model a given motion is notoverwhelming (see also the discussion in [7]), and alsoshow how these models can be employed even in con-ditions when there is partial/full occlusion of some ofthe body parts (speci�cally, we demonstrate an abilityto track both legs in motion from viewpoints in whichone leg occludes part of the other).The appearance models are created by applying astandard principal components analysis to time se-quences of parametric models of body part motion.These observations are obtained using the \cardboardbody" model introduced in [8] which employs the sim-ple constraint that the motion of body parts must agreeat the joints where those parts meet. Much of theanalysis is carried out in a multi-temporal optical 
owframework described in [10], which is crucial for an-alyzing time-varying images of humans since the in-stantaneous motions of body parts can span a broadspectrum of magnitudes, from sub-pixel to many pix-els per frame. The 
ow models employed there werebased on either constant 
ow or constant accelerationwithin the temporal integration window. For most hu-man motions this assumption will not hold as the tem-poral window is enlarged. We propose, instead, usinglearned motion models to bridge the gap between tra-ditional instantaneous 
ow estimation and multi-framemotion estimation. These learned motion models arethen used in a spatio-temporally constrained image-motion formulation for simultaneous estimation of sev-eral rigid and non-rigid motions.



2 A Temporal Model for ImageMotionIn the following we employ two temporal variables sand t. The global time t denotes time relative to thebeginning of the image sequence while s denotes timerelative to the time instant t. Let I(x; y; t) be the imagebrightness at a point (x; y) at time t. The brightnessconstancy assumption of this point at a subsequenttime s, s = 1; :::; n, is given byI(x; y; t) = I(x+ sXj=1 u(j); y + sXj=1 v(j); t + s) (1)where (u(j); v(j)) is the horizontal and vertical in-stantaneous image velocity of the point (x; y) betweenframes (t+ j � 1) and (t+ j). Let (u; v) = (u(0); v(0))denote the instantaneous 
ow at time t. The specialcases where (u(j); v(j)) are constant for all j or sat-isfy a constant acceleration model relative to t wereconsidered in [10]:u(j) = x0 + x1j (2)v(j) = x2 + x3j (3)throughout the period n�t (where n is the numberof time instants and �t is the time increment-usually�t = 1). Such 
ow models are unlikely to hold overlong intervals n�t. In the following, we develop a moregeneral model in which the 
ow is a \learned" func-tion of time (u(j); u(j)). Let the range of time overwhich temporal-
ow (sequences of instantaneous 
ow)is estimated be 1; ::; n. Expanding Equation (1) using aTaylor series approximation (assuming smooth spatialand temporal intensity variations) and dropping termsresults in0 =Isx(x; y; t) sXj=1u(j)+Isy(x; y; t) sXj=1v(j)+sIst(x; y; t)(4)where Is is the s-th frame (forward in time relative toI) of the sequence, and Isx; Isy and Ist are the spatialand temporal derivatives of image Is relative to I.Since Equation (4) is underconstrained for the re-covery of (u(j); v(j)), the estimation of (u(j); v(j)) isordinarily posed as an error minimization using a ro-bust error norm, �(x; �e), that is a function of a scaleparameter �e. Then, the error of the 
ow over a verysmall neighborhood, R, of (x; y) is,E(u; v; s) = X(x;y)2R�(Isx sXj=1u(j)+Isy sXj=1 v(j)+sIs t; �e)(5)

We have n equations of the form of Equation (5), onefor each time instant. The time-generalized error isde�ned asED(u; v)= nXs=1 X(x;y)2R�(Isx sXj=1u(j)+Isy sXj=1v(j)+sIs t; �e)(6)Equation (6) gives equal weight to the error values atall subsequent time instants. Since it is expected thatat each point (x; y) the accuracy of instantaneous mo-tion estimation will temporally vary2, we introduce aweight function W (u; v; s) designed to minimize thein
uence of residuals of the relatively inaccurate timeinstants. Equation (6) now becomesED(u; v)= nXs=1 X(x;y)2R�(W (u; v; s)(Isx sXj=1u(j) +Isy sXj=1v(j) + sIst); �e) (7)Since the weight function W (u; v; s) could also re-
ect the degree of accuracy of the 
ow estimation,we rede�ne it to include a scaling parameter �w,W (u; v; s; �w). The weighting function W was de-signed [10] to satisfy the following constraints:� Take on values in the range [0::c], c typically chosenas 1:0 for computational convenience.� For a large �w, W approaches 1.0 regardless of (u; v)and s.� Given �w, larger estimated 
ow (u; v) at point (x; y)leads to higher weights for the lower time instantsof the error term IsxPsj=1 u(j) + IsyPsj=1 v(j) +sIst, while a small 
ow leads to higher weights ofthe highest time instants.The following Gaussian function, proposed in [10],satis�es the above requirementsW (u; v; s; �w) = e�(s� n(�jj(u;v)jj2+1:0) )2=2�w2 (8)where jj(u; v)jj2 is the squared magnitude of the current
ow estimate at (x; y), and � is a constant. Figure 1qualitatively re
ects the shape of the weighting func-tion for a �xed �w. It illustrates the weighting as afunction of time, s, and 
ow magnitude, jj(u; v)jj, at(x; y). Notice that when jj(u; v)jj2 << 1:0 the maxi-mal weight occurs at the highest time n, while highervalues of jj(u; v)jj2 lead to a maximal weight at lower2This time-dependence is due to the possible existenceof widedisparities in the 
ow �eld.
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ow magnitude jj(u; v)jjtime instants; speci�cally the Gaussian is centered atn�jj(u;v)jj2+1:0 . The scale parameter �w determines thewidth of the Gaussian, and the constants � and 1:0can be changed to further shift the maximal weight lo-cation. The application of the weighting function inthe estimation is as follows: in the �rst iteration, alltime instants are given equal weight (1.0) by selectinga large �w. Afterwords, iteratively, the estimates arere�ned by decreasing �w.This multi-temporal procedure is accompanied bya spatial coarse-to-�ne strategy [2] that constructs apyramid of the spatially �ltered and sub-sampled im-ages (for more information see [4]) and computes the
ow initially at the coarsest level and then propagatesthe results to �ner levels.3 Learning Temporal-Flow ModelsTemporal-
ow models are constructed by applyingprincipal component analysis to exemplar 
ow se-quences. So, the functions of (u(s); v(s)) for s =1:::n are approximated by a linear combination of atemporal-
ow basis-set of 1 � 2 � n vectors, Ui. The
ow vector (u(s); v(s)) can be reconstructed as a com-ponent from (u(n); v(n)) using�e = qXi=1 ciUi;j (9)where �e, the temporal-
ow vector, denotes the con-catenation of u(n) and v(n) and ci is the expansioncoe�cient of the Ui-th temporal-
ow basis vector andq is the number of vectors used as the basis-set.Equation (7) can now be expressed as:ED(u; v) = nXs=1 X(x;y)2R �(W (u; v; s)([Isx Isy][ sXj=1 qXi=1 ciUi;j; n+sXj=n+1 qXi=1 ciUi;j ]T + sIst); �e) (10)where [ ]T is the transpose of the temporal-
ow vector.Notice that the summation of the linear combination

includes only the s values of u and v. Equation (10)essentially describes how imagemotion of a point (x; y)changes over time under the constraint of a temporal-
ow basis-set.Purely spatial constraints on image motions were re-cently proposed by Black et al. [6]. There, a low dimen-sional representation of the spatial distribution of im-age motions in a region was learned and used in recov-ering motion in image sequences. This spatial modelprovides only an instantaneous constraint on 
ow. Incomparison, the temporal-
ow models described aboveexpress how 
ow changes over time at (for the moment)a single point. In the subsequent section we explainhow our temporal-
ow model can be extended to in-clude spatial constraints as well.The temporal-
ow basis-set is computed during alearning stage in which examples of the speci�c image-motions are subjected to principal component analysis.Speci�cally, let (ui(s); vi(s)) for s = 1; :::; n be the i�thinstance (out of N instances) of an incremental 
ow se-ries measured for an image point (x; y) at time instantss = 1; :::; n. The estimation of (ui(s); vi(s)) can becarried out either using the multi-scale approach pro-posed in [10] or by direct two-frame 
ow estimationtechnique.Let �ei be the vector obtained by concatenating ui(s)for s = 1; :::; n and vi(s) for s = 1; :::; n. The set ofvectors �ei can be arranged in a matrix A of N rowsby 2 � n columns. Matrix A can be decomposed usingSingular Value Decomposition (SVD) asA = U�V T (11)where U is an orthogonal matrix of the same size as Arepresenting the principal component directions in thetraining set. � is a diagonal matrix with singular val-ues �1; �2; :::; �N sorted in decreasing order along thediagonal. The N � N matrix V T encodes the coe�-cients to be used in expanding each column of A interms of principal component directions. It is possibleto approximate an instance of 
ow sequence �e usingthe largest q singular values �1; �2; :::; �q, so that�e� = qXl=1 clUl (12)where �e� is the vector approximation, cl are scalar val-ues that can be computed by taking the dot productof �e and the column Ul. In e�ect this amounts to pro-jecting the vector �e� onto the subspace de�ned by theq basis vectors. The projection can also be viewed as aparameterization of the vector �e in terms of the basisvectors Ul (l = 1::q) where the parameters are the cl's.



4 Parameterized Spatio-TemporalImage-MotionRecently, it has been demonstrated that spatially pa-rameterized 
ow models are a powerful tool for mod-eling instantaneous image motion ([5, 6, 8]). Thetemporal-
ow learning and estimation algorithms canbe extended to spatially parameterized models of im-age 
ow. In this section we describe the learned es-timation of polynomial parameterized image motionmodels.Recall that the 
ow constraint given in Equation(4) assumes constant 
ow over a small neighborhoodaround the point (x; y). Over larger neighborhoods,a more accurate model of the image 
ow is providedby low-order polynomials [1]. For example, the pla-nar motion model [1] is an approximation to the 
owgenerated by a plane moving in 3-D under perspectiveprojection. The model is given byU (x; y) = a0 + a1x+ a2y + a6x2 + a7xy (13)V (x; y) = a3 + a4x+ a5y + a6xy + a7y2 (14)where ai's are constants and (U; V ) is the instanta-neous velocity vector. The a�ne model is the specialcase where a6 = a7 = 0 and generally holds when theregion modeled is not too large or subject to signi�-cant perspective e�ects. Equation (14) can be writtenin matrix form as [UV ]t = XPT (15)whereX(x; y)=� 1 x y 0 0 0 x2 xy 00 0 0 1 x y xy y2 x2 � ;P =� a0 a1 a2 a3 a4 a5 a6 a7 0 �TTo exploit the economy of parameterized models, were-formulate the temporal-
ow models to learn thetemporal evolution of the parameters of the planarmodel as opposed to only the 
ow values. Speci�cally,consider the parameters ai to be a function of s (similarto the 
ow formulation), so thatP(s)=�a0(s) a1(s) a2(s) a3(s) a4(s) a5(s) a6(s) a7(s) 0�Twhere P(s) is the image motion parameters computedbetween time instant s� 1 and s.Equation (7) can be rewritten asED(u; v)= nXs=1 Xx;y2R�(W (u; v; s)([IsxIsy]X[ sXj=1P(j)]T+sIst);�e)(16)where R denotes the region over which the planar mo-tion model is applied. Notice that the termPsj=1P(j)

requires proper region registration between time in-stants. P(j), j = 1; :::; n, can be represented by alinear combination of basis vectors in a manner similarto the temporal-
ow representation developed earlier.Each basis vector, Li is a vector of size 8 � n since itgenerates the eight parameters for each time instants. We can extract P(j) from the following elements ofvector �e which is the following sum of temporal-
owbases, �e = [e]r=1;:::;8�n = qXi=1 ciLi;r (17)where ci is the expansion coe�cient of the Li temporal-parameter basis vector. Equation (16) can now berewritten asED(u; v) = nXs=1 X(x;y)2R �(W (u; v; s)([IsxIsy]X[ sXj=1 qXi=1 ciLi;j; :::; 7n+sXj=7n+1 qXi=1 ciLi;j ]T + sIst); �e) (18)The minimization of Equation (18) results in esti-mates for the parameters ci. The choice of the weight-ing function W is somewhat more complex here thanit was in the multi-scale temporal-
ow. The weightingfunction can be designed using the current 
ow esti-mates computed by the model (U; V ). This weightingleads to di�erent weights within the region accordingto the magnitude of the 
ow, so that points where the
ow estimate is low at later time instants are moredominant, while the larger 
ow estimates will deter-mine the earlier time instants. Alternatively, W canbe designed using the parameters of the model ai(s)(i.e., W (�a; s; �w) where �a is the set of model param-eters). The former leads to a computation based ona weighted combination of spatio-temporal derivativeswhile the latter leads to a weighted combination ofparametric models. Once a choice for the weightingfunction has been made, the computation of the pa-rameters of the model follows the approach proposedin [4].In the examples in this paper we adopt the weightedcombination of parametric models. In the followingexamples the estimation of 
ow within a region is mo-tivated by computing a particular motion of the region,therefore W is designed to be most sensitive to a par-ticular subset of these parameters. For example, if thetranslation of the region is of most interest then theparameters a0 and a3 can be substituted as jj(a0; a3)jjfor jj(u; v)jj in Equation (8).The above treatment of polynomial 
ow is also appli-cable to the orthogonal-basis modeling of spatial 
owrecently proposed in [6]. The coe�cients used in the



linear combination replace the parameters ai in theabove equations.5 A Rigid Motion ExampleThe use of a temporally parameterized motion modelthat explicitly accounts for image acceleration and iscomputed directly from image intensity variations si-multaneously was discussed in [10]. Here, we demon-strate how a learned temporal-
ow model can captureimage acceleration by watching a book \falling" in animage sequence.The learning of the temporal-
ow model is per-formed as follows,� The area corresponding to the book is manually seg-mented in the �rst frame in the sequence.� The image motion parameters of this area are esti-mated for 40 frames assuming a planar model (
owestimation is carried out between consecutive imagesonly).� A basis set for the temporal-
ow parameters is com-puted by taking four groups of 10 consecutive in-stantaneous 
ow vectors.� The basis set is used to compute the coe�cientsusing Equation (18) for the whole sequence (100frames).In this experiment the �rst eigenvalue captured 99.9%of the variation among the 4 data-sets as one mightexpect for such a uniform motion. Therefore, a singleeigenvector is used in the motion estimation stage.Figure 2 shows the results of tracking the book us-ing the temporal-
owmodel. The graphs in the middlerow show the value of a0(s) and a3(s) (for s = 1:::10)of the eigenvector used in estimation. While a0(s) is anearly zero (corresponding to little horizontal motion),the vertical motion component a3(s) is linear. Thelower graph shows the estimated coe�cient c0 through-out the long image sequence. This coe�cient grows lin-early, which is what one would expect since the motionis second order (i.e., a constant acceleration model).The learned spatio-temporal models can be appliedto other objects performing similar motions. Thetemporal-
ow basis-vector learned for the book is usedto estimate the falling of a di�erent object, a cardboardbox. Figure 3 shows the images, the tracking resultsand the coe�cient c0 that is also recovered throughoutthe falling. Notice that despite the accurate transla-tional tracking some counterclockwise rotation is re-covered. This is not surprising since the motion of thebook included a rotational component, while the boxfell without rotation. We elaborate on the implicationsof this in a later section.
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C
oFigure 2: Four frames of a falling book tracked bya temporal-
ow model (top rows), the horizontal andvertical velocities components of the learned basis-vector (third row) and the recovered expansion coef-�cient throughtout the sequence (bottom row).It is worth noting that the motion trajectory of thebox creates a line parallel (see Figure 3 bottom row) tothe falling book's trajectory. Equation (18) minimizesthe error within a subspace (of a single basis vector, inthis case) in which the linear combinations of one linelead to parallel lines.6 Learned Models of ArticulatedHuman MotionThe cardboard [8] model for tracking �ve-part humanmovement (arm, torso, thigh, calf and foot) involves re-covering 40 motion parameters; this requires substan-tial computation. Furthermore, due to the chain-likestructure of the tracking, any error in the computationin an early part (in the chain structure) propagates tothe succeeding parts. In the following, we use a camerawith resolution 256� 256 at 99Hz; this temporal sam-pling rate is high enough for us to e�ectively employdi�erential 
ow estimation. In most sequences the full
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C
oFigure 3: A sequence of falling box (top row), thetracked box (middle row) and the recovered temporal-
ow coe�cient throughout the sequence (solid line)and for comparison the temporal-
ow coe�cient forthe falling book (dashed line)human body is observed performing an activity; there-fore, the image support for each body part is usuallylimited to a fairly small number of pixels.Learning models of articulated motion can lead tomuch simpler representations in which redundanciesare removed and motion couplings learned. A set ofsamples of the temporal-
ow values of the parts of ar-ticulated object covering one entire period of an ac-tivity are modeled using principal component analysis.Applying this model to a new sequence of the articu-lated object motion requires temporally \registering"the model to the observation at the initial time t03.In the experiments presented in this section, we time-register sequences manually.Similar to the accelerating book example, we assumeinitially that:� The body is manually segmented into �ve parts inthe �rst frame.� People are moving at a similar viewing angle to thecamera during the training and testing phases.3Actually, both static and temporal information could beused to automate this initialization. Static information includesidentifying speci�c con�gurations of body parts that unambigu-ously indicate the temporal stage of the activity (e.g., for walk-ing, two feet on the ground, a straight leg just landed on theground, etc.). Dynamic information includes exploiting knowl-edge about themotion of body parts during activity performance(e.g., the feet are not moving, etc.).

Figure 4: A few frames from a long image sequence ofa subject walking with the cardboard tracking [8].� A single activity, such as \walking," is learned andtracked. The stage of the \walking" cycle of the �rstframe of the sequence is known.Learning of a the \walking" cycle temporal-
owmodel is performed by �rst employing the algorithmof Ju et al. [8] to compute each region's instantaneousmotion parameters during the observed cycle of the ac-tivity. Then, the motion paramters of the activity cy-cles of several people are used to derive the basis-set oftemporal-
ows of the activity. It is worth noting thatalthough the basis-vectors are computed for a wholecycle of \walking" the instantaneous motion recoveryis conducted using a small computation temporal win-dow (typically 6-10 frames). The �ve parts are trackedusing Equation (18), the body parts are considered asa single object with individual motion parameters foreach part coordinated through the principal compo-nents model.Figure 4 displays a few frames of a walking sequencefrom the training set of one subject with the �ve-partbody tracking as in [8]. Notice that the tracking ac-cumulates errors, some of which also appear in thetemporal-
ow tracking. In learning the model fromten people's gait4, the �rst basis vector accounts forabout 67% of the variations and re
ects very clearlythe \walking" cycle. The next 4 basis vectors captureabout 23% of the variations and capture imaging, in-dividual variations and some di�erencies in image ac-quisition conditions.Figure 5 shows the results of tracking a new instanceof walking of a subject using only the �rst basis-vectorof the temporal-
ow. It also shows the coe�cient, c0,recovered throughout the sequence (n = 8). Low imagecontrast leads to accumulation of tracking errors.The learned temporal-
owmodels remain e�ective intracking articulated motion even when distance fromthe camera and the viewpoint vary from the train-4The distance and viewing direction in the training datawas constant. The viewing direction was approximately fronto-parallel



ing set. The variation in distance introduces practi-cal problems of optical 
ow estimation since the modelwas learned for a \distant" object from the camera,and the tracking is conducted at a closer distance;here, the non-rigid motion of clothing and strongerperspective e�ects are visible. Varying the viewpointposes a more fundamental problem since the appear-ance of the activity changes as we move farther fromthe learned viewpoint. In the following �gures we pro-vide results in which the viewing angle is about 20degrees o� the fronto-parallel plane. In experiments,not shown here, in which the viewing angle was closeto 45 degrees o� the fronto-parallel plane, we observedthat the calf and foot are not tracked well while thetorso and thigh tracking was satisfactory. Moreover,the estimation process was observed to rely heavily onthe correctly tracked torso and thigh, while the otherparts were found to be nonconforming with respect tothe temporal-
ow model of walking.Figures 6 and 7 show the tracking of walking overa long sequence, where the distance and viewing angleare di�erent from those used in learning. Also, in Fig-ure 7, a subject not part of the training set is perform-ing the activity. This example shows tracking errors,especially at the body extremities, (note that most ofthese errors are due to learning errors from the originaldata-for example the enlargement of the foot area).Learned temporal-
ow of activities can also supporttracking of partially occluded parts. We demonstratethe performance of our approach on sequences of twoactivities, walking and marching. Since in these activ-ities the movement of the legs and arms is symmetric,once a model for the visible parts is learned it can beapplied to the occluded ones. Speci�cally, we assumethat the phase di�erence between the visible and oc-cluded parts to be one half cycle. We also assume thatthe di�erence in distance between the legs and the cam-era are insigni�cant relative to the distance of the bodyfrom the camera. In the �rst frame we initialize the re-gions for ten body parts (when parts are occluded wesimply hypothesize their locations). Then, we mini-mize Equation (18), where all ten regions are regardedas a single object with multiple motion parameters.Only the un-occluded pixels of each region are used inthe motion recovery. Each activity model was learnedseparately from a single example of its performance.The results of the tracking of a marching activity ina long sequence is shown in Figure 8. The two legs aretracked well despite some inaccuracies that are due tothe learned model inaccuracies.
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C
oFigure 5: A few frames from a long image sequence ofa subject walking with the temporal-
ow tracking of anew subject's walk and the recovered coe�cient.

(1170) (1155) (1125) (1095)Figure 6: A few frames from a long image sequenceof a subject walking as seen from a di�erent viewingdirection with the computed temporal-
ow tracking.7 DiscussionIn this paper we proposed a new approach for im-age motion estimation from multiple frames that useslearned models of temporal-
ow. Demonstration of theperformance of the algorithm on both rigid and articu-lated motions were provided. An activity learned fromone speci�c viewpoint was used to estimate the motionof a novel subject performing the same activity froma di�erent but similar viewpoint. Also, it was demon-strated that the tracking of the occluded body partsis possible when a temporal model of one side of thebody have been learned.Learning plays a critical role in the accuracy of 
owestimation. In our experiments on articulated motion,we observed that the inaccuracies of the cardboardmodel from [8] used to generate the training set for



(1140) (1100) (1065) (1035)Figure 7: A few frames from a long image sequenceof a subject walking with the computed temporal-
owtracking.the learning algorithm lead to similar inaccuracies inthe temporal-
ow estimation. The tracking of the foothas been particularly problematic since in most imagesequences it occupies a region of only about 30-100pixels.The learning of temporal-
ow models of activitieswas performed independently for each activity consid-ered (e.g., a separate model for each of walking, march-ing etc.). Subsequent body motion tracking would si-multaneously employ all models to estimate the imagemotion, with the \best" model selected. How to reducethe number of temporal 
ow models, while minimizingthe likelyhood that activities combined into one modeldo not result in tracking errors. (since only certainlinear combinations of the basis functions would corre-spond to actual activities) is an open problem.The temporal-
ow estimation performs successfullyeven when the motions of some parts do not conformto the model, as long as a the majority of parts doconform. For example, in the case of walking, overalltracking is not disrupted if the arm is not moving in amanner consistent with its motion during the learningstage. Of course, the arm tracking fails, but the overallbody tracking remains accurate. The current strongcoupling between motions of body parts will be relaxedin future research to allow weaker motion couplings forcertain parts. References[1] Adiv G. Determining three-dimensional motionand structure from optical 
ow generated by sev-eral moving objects. IEEE PAMI, Vol. 7(4), 1985,384-401.[2] J.R. Bergen, P. Anandan, K.J. Hanna and R. Hin-gorani. Hierarchical model-based motion estima-tion. In G. Sandini, editor, ECCV-92, Vol. 588 ofLNCS-Series, Springer-Verlag, 1992, 237-252.

(2075) (2095) (2115) (2135)
(2155) (2175) (2195) (2215)Figure 8: A few frames from a long image sequence ofa subject marching with the temporal-
ow tracking ofa subject's marching for both the visible and occludedparts.[3] C. Bregler and S. Omohundro, Nonlinear ManifoldLearning for Visual Speech Recognition, ICCV 95,494-499.[4] M. Black and P. Anandan. The robust estimationof multiple motions: Parametric and piecewise-smooth 
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