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Abstract

An approach for learning and estimating temporal-
flow models from image sequences is proposed.
The temporal-flow models are represented as a set
of orthogonal temporal-flow bases that are learned
using principal component analysis of instanta-
neous flow measurements. Spatial constraints on
the temporal-flow are also developed for modeling
the motion of regions in rigid and coordinated mo-
tion. The performance of these models 1s demon-
strated on several long image sequences of rigid
and articulated bodies in motion.

1 Introduction

Tracking the image motion of a human body in action
is an exceptionally challenging computer vision prob-
lem. Even ignoring the fine structure of the hands,
and assuming that the feet are rigidly connected to
the calves and the hands to the forearms, a human
body is composed of ten basic parts, many of which
can move in quite independent ways. Natural human
motions, such as walking, kicking, etc., are, of course,
very constrained by factors including motion symme-
tries, static and dynamic balance requirements, grav-
ity, etc. A physics-based approach to analysis of human
motion might involve locating and tracking the limbs
and extremities of the body under control of a mecha-
nism that optimizes the tracking with respect to known
physical constraints. This turns out to be a rather
daunting enterprise, due to the difficulties of identify-
ing body parts in natural video imagery and the chal-
lenges of developing efficient computational methods
for modeling and enforcing such physical constraints.
An alternative approach 1s to develop “appearance-
based” models for human motion, and use these mod-
els to control tracking of human motion. Examples
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of this approach include [3, 9]. The main challenges
to such appearance-based methods are viewpoint de-
pendence, dealing with appearance variability (due to
changes in clothing, shadowing, body size and propor-
tions between individuals), recognition in the presence
of occlusion, etc.

In this paper we show how low-dimensional
appearance-based models of articulated human motion
can be recovered from observations of such motions,
and how these models can be used to track the mo-
tions of other humans performing similar motions. We
present some experimental evidence that suggests that
the number of viewpoint-dependent appearance mod-
els that one would need to model a given motion is not
overwhelming (see also the discussion in [7]), and also
show how these models can be employed even in con-
ditions when there is partial/full occlusion of some of
the body parts (specifically, we demonstrate an ability
to track both legs in motion from viewpoints in which
one leg occludes part of the other).

The appearance models are created by applying a
standard principal components analysis to time se-
quences of parametric models of body part motion.
These observations are obtained using the “cardboard
body” model introduced in [8] which employs the sim-
ple constraint that the motion of body parts must agree
at the joints where those parts meet. Much of the
analysis is carried out in a multi-temporal optical flow
framework described in [10], which is crucial for an-
alyzing time-varying images of humans since the in-
stantaneous motions of body parts can span a broad
spectrum of magnitudes, from sub-pixel to many pix-
els per frame. The flow models employed there were
based on either constant flow or constant acceleration
within the temporal integration window. For most hu-
man motions this assumption will not hold as the tem-
poral window is enlarged. We propose, instead, using
learned motion models to bridge the gap between tra-
ditional instantaneous flow estimation and multi-frame
motion estimation. These learned motion models are
then used in a spatio-temporally constrained image-
motion formulation for simultaneous estimation of sev-
eral rigid and non-rigid motions.



2 A Temporal Model for Image
Motion

In the following we employ two temporal variables s
and t. The global time ¢ denotes time relative to the
beginning of the image sequence while s denotes time
relative to the time instant ¢. Let I(x, y, ) be the image
brightness at a point (x,y) at time ¢. The brightness
constancy assumption of this point at a subsequent
time s, s = 1,...,n, 1s given by

I(x,y,t) _Ix—l—z y—i—Z )t+s) (1)

where (u(j),v(j)) is the horizontal and vertical in-
stantaneous image velocity of the point (z,y) between
frames (t 4+ j— 1) and (¢ + ). Let (u,v) = (u(0),v(0))
denote the instantaneous flow at time ¢. The special
cases where (u(j),v(j)) are constant for all j or sat-
1sfy a constant acceleration model relative to ¢ were
considered in [10]:

w(j) = xo +21j (2)
v(j) = x2 + x3] (3)

throughout the period nét (where n is the number
of time instants and 6t is the time increment-usually
8t = 1). Such flow models are unlikely to hold over
long intervals nét. In the following, we develop a more
general model in which the flow is a “learned” func-
tion of time (u(j), u(j)). Let the range of time over
which temporal-flow (sequences of instantaneous flow)
is estimated be 1,..,n. Expanding Equation (1) using a
Taylor series approximation (assuming smooth spatial
and temporal intensity variations) and dropping terms
results in
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where I* is the s-th frame (forward in time relative to
I) of the sequence, and I, I*, and I*; are the spatial
and temporal derivatives of image I° relative to .
Since Equation (4) is underconstrained for the re-
covery of (u(j),v(j)), the estimation of (u(j),v(j)) is
ordinarily posed as an error minimization using a ro-
bust error norm, p(x, o), that is a function of a scale
parameter o.. Then, the error of the flow over a very

small neighborhood, R, of (z,y) is,
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We have n equations of the form of Equation (5), one
for each time instant. The time-generalized error 1s

defined as
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Equation (6) gives equal weight to the error values at
all subsequent time instants. Since it is expected that
at each point (z,y) the accuracy of instantaneous mo-
tion estimation will temporally vary?, we introduce a
weight function W(u,v,s) designed to minimize the
influence of residuals of the relatively inaccurate time
instants. Equation (6) now becomes

Ep(u,v)=) Z)MWWWJMFQEMﬂ+
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Since the weight function W(u,v,s) could also re-
flect the degree of accuracy of the flow estimation,
we redefine it to include a scaling parameter oy,
W(u,v,s,0y). The weighting function W was de-
signed [10] to satisfy the following constraints:

e Take on values in the range [0..c], ¢ typically chosen
as 1.0 for computational convenience.

e For a large oy, W approaches 1.0 regardless of (u, v)
and s.

o Given oy, larger estimated flow (v, v) at point (z,y)
leads to higher weights for the lower time instants
of the error term I°, Z;Il u(f) + Iy Z;Il v(j) +
sI?y, while a small flow leads to higher weights of
the highest time instants.

The following Gaussian function, proposed in [10],
satisfies the above requirements

W(u,v,s,04) = e_(s_m)Q/me (8)
where ||(u, v)||? is the squared magnitude of the current
flow estimate at (x,y), and « is a constant. Figure 1
qualitatively reflects the shape of the weighting func-
tion for a fixed oy,. It illustrates the weighting as a
function of time, s, and flow magnitude, ||(u,v)]|, at
(z,y). Notice that when [|(u,v)||* << 1.0 the maxi-
mal weight occurs at the highest time n, while higher
values of ||(u,v)||? lead to a maximal weight at lower

2 This time-dependence is due to the possible existence of wide
disparities in the flow field.
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Figure 1: The weighting function as a function of s and
flow magnitude ||(u, v)]|

time instants; specifically the Gaussian is centered at
W. The scale parameter o, determines the
width of the Gaussian, and the constants « and 1.0
can be changed to further shift the maximal weight lo-
cation. The application of the weighting function in
the estimation is as follows: in the first iteration, all
time instants are given equal weight (1.0) by selecting
a large o,,. Afterwords, iteratively, the estimates are
refined by decreasing oy, .

This multi-temporal procedure is accompanied by
a spatial coarse-to-fine strategy [2] that constructs a
pyramid of the spatially filtered and sub-sampled im-
ages (for more information see [4]) and computes the
flow initially at the coarsest level and then propagates
the results to finer levels.

3 Learning Temporal-Flow Models

Temporal-flow models are constructed by applying
principal component analysis to exemplar flow se-
quences. So, the functions of (u(s),v(s)) for s =
1...n are approximated by a linear combination of a
temporal-flow basis-set of 1 x 2 x n vectors, U;. The
flow vector (u(s),v(s)) can be reconstructed as a com-
ponent from (u(n), v(n)) using

q

e = Z c; Ui,j (9)

i=1
where e, the temporal-flow vector, denotes the con-
catenation of u(n) and v(n) and ¢; is the expansion
coefficient of the U;-th temporal-flow basis vector and
q is the number of vectors used as the basis-set.

Equation (7) can now be expressed as:

Ep(w,v) = Y > p(W(uv,s)([I°x %]
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where []7 is the transpose of the temporal-flow vector.
Notice that the summation of the linear combination

includes only the s values of u and v. Equation (10)
essentially describes how image motion of a point (z, y)
changes over time under the constraint of a temporal-
flow basis-set.

Purely spatial constraints on image motions were re-
cently proposed by Black et al. [6]. There, a low dimen-
sional representation of the spatial distribution of im-
age motions in a region was learned and used in recov-
ering motion in image sequences. This spatial model
provides only an instantaneous constraint on flow. In
comparison, the temporal-flow models described above
express how flow changes over time at (for the moment)
a single point. In the subsequent section we explain
how our temporal-flow model can be extended to in-
clude spatial constraints as well.

The temporal-flow basis-set is computed during a
learning stage in which examples of the specific image-
motions are subjected to principal component analysis.
Specifically, let (u?(s),v(s)) for s = 1,...,n be the i—th
instance (out of N instances) of an incremental flow se-
ries measured for an image point (z, y) at time instants
s = 1,..,n. The estimation of (u’(s),v!(s)) can be
carried out either using the multi-scale approach pro-
posed in [10] or by direct two-frame flow estimation
technique.

Let & be the vector obtained by concatenating u’(s)
for s = 1,...,n and vi(s) for s = 1,...,n. The set of
vectors €' can be arranged in a matrix A of N rows
by 2 *n columns. Matrix A can be decomposed using
Singular Value Decomposition (SVD) as

A=UxvV" (11)

where U is an orthogonal matrix of the same size as A
representing the principal component directions in the
training set. X is a diagonal matrix with singular val-
ues 01,09, ...,0N sorted in decreasing order along the
diagonal. The N x N matrix V7 encodes the coeffi-
cients to be used in expanding each column of A in
terms of principal component directions. It is possible
to approximate an instance of flow sequence e using
the largest ¢ singular values 04,09, ..., 04, so that

q
e => al (12)
=1

where e* is the vector approximation, ¢; are scalar val-
ues that can be computed by taking the dot product
of e and the column U;. In effect this amounts to pro-
jecting the vector €* onto the subspace defined by the
q basis vectors. The projection can also be viewed as a
parameterization of the vector € in terms of the basis
vectors U (I = 1..q) where the parameters are the ¢;’s.



4 Parameterized Spatio-Temporal

Image-Motion
Recently, it has been demonstrated that spatially pa-
rameterized flow models are a powerful tool for mod-
eling instantaneous image motion ([5, 6, 8]). The
temporal-flow learning and estimation algorithms can
be extended to spatially parameterized models of im-
age flow. In this section we describe the learned es-
timation of polynomial parameterized image motion
models.

Recall that the flow constraint given in Equation
(4) assumes constant flow over a small neighborhood
around the point (z,y). Over larger neighborhoods,
a more accurate model of the image flow is provided
by low-order polynomials [1]. For example, the pla-
nar motion model [1] is an approximation to the flow
generated by a plane moving in 3-D under perspective
projection. The model is given by

ao + a1z + asy + agx’ + aray (13)
as + asz + asy + agry + ary’ (14)

U(z,y)
Vie,y) =

where a;’s are constants and (U, V) is the instanta-
neous velocity vector. The affine model is the special
case where ag = a7 = 0 and generally holds when the
region modeled is not too large or subject to signifi-
cant perspective effects. Equation (14) can be written
in matrix form as

[Uv]) = xp? (15)
where
1 2y 0 0 0 22 zy 0
X(z,y)= 00 01 2z y zy y? 2|’

To exploit the economy of parameterized models, we
re-formulate the temporal-flow models to learn the
temporal evolution of the parameters of the planar
model as opposed to only the flow values. Specifically,
consider the parameters a; to be a function of s (similar
to the flow formulation), so that

P(s)=[ao(5) a1(s) ax(s) as(s) as(s) as(s) as(s) az(s) 0

where P(s) is the image motion parameters computed
between time instant s — 1 and s.
Equation (7) can be rewritten as
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where R denotes the region over which the planar mo-
tion model is applied. Notice that the term Z;Il P(j)

requires proper region registration between time in-
stants. P(j), j = 1,...,n, can be represented by a
linear combination of basis vectors in a manner similar
to the temporal-flow representation developed earlier.
Each basis vector, L; is a vector of size 8 # n since it
generates the eight parameters for each time instant
s. We can extract P(j) from the following elements of
vector € which is the following sum of temporal-flow

bases,
q

€= [6]7“:1,...,8*71 = Z CiLi,r

i=1

(17)
where ¢; 1s the expansion coefficient of the L; temporal-

parameter basis vector. Equation (16) can now be
rewritten as

Ep(u,v) = Z Z pPW (u, v, s)([I°2 Iy )X

s=1 (z,y)ER
s q n+s ¢
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The minimization of Equation (18) results in esti-
mates for the parameters ¢;. The choice of the weight-
ing function W is somewhat more complex here than
it was in the multi-scale temporal-flow. The weighting
function can be designed using the current flow esti-
mates computed by the model (U, V). This weighting
leads to different weights within the region according
to the magnitude of the flow, so that points where the
flow estimate is low at later time instants are more
dominant, while the larger flow estimates will deter-
mine the earlier time instants. Alternatively, W can
be designed using the parameters of the model a;(s)
(i.e., W(a,s,oy) where a is the set of model param-
eters). The former leads to a computation based on
a weighted combination of spatio-temporal derivatives
while the latter leads to a weighted combination of
parametric models. Once a choice for the weighting
function has been made, the computation of the pa-
rameters of the model follows the approach proposed
in [4].

In the examples in this paper we adopt the weighted
combination of parametric models. In the following
examples the estimation of flow within a region is mo-
tivated by computing a particular motion of the region,
therefore W is designed to be most sensitive to a par-
ticular subset of these parameters. For example, if the
translation of the region i1s of most interest then the
parameters ag and ag can be substituted as ||(ao, as)]|
for ||(u, v)|| in Equation (8).

The above treatment of polynomial flow is also appli-
cable to the orthogonal-basis modeling of spatial flow
recently proposed in [6]. The coefficients used in the



linear combination replace the parameters a; in the
above equations.

5 A Rigid Motion Example

The use of a temporally parameterized motion model
that explicitly accounts for image acceleration and is
computed directly from image intensity variations si-
multaneously was discussed in [10]. Here, we demon-
strate how a learned temporal-flow model can capture
image acceleration by watching a book “falling” in an
image sequence.

The learning of the temporal-flow model is per-
formed as follows,

e The area corresponding to the book is manually seg-
mented in the first frame in the sequence.

e The image motion parameters of this area are esti-
mated for 40 frames assuming a planar model (flow
estimation is carried out between consecutive images
only).

e A basis set for the temporal-flow parameters 1s com-
puted by taking four groups of 10 consecutive in-
stantaneous flow vectors.

e The basis set 1s used to compute the coefficients
using Equation (18) for the whole sequence (100
frames).

In this experiment the first eigenvalue captured 99.9%
of the variation among the 4 data-sets as one might
expect for such a uniform motion. Therefore, a single
eigenvector is used in the motion estimation stage.

Figure 2 shows the results of tracking the book us-
ing the temporal-flow model. The graphs in the middle
row show the value of ag(s) and as(s) (for s = 1...10)
of the eigenvector used in estimation. While ag(s) is a
nearly zero (corresponding to little horizontal motion),
the vertical motion component as(s) is linear. The
lower graph shows the estimated coefficient ¢y through-
out the long image sequence. This coefficient grows lin-
early, which is what one would expect since the motion
is second order (i.e., a constant acceleration model).

The learned spatio-temporal models can be applied
to other objects performing similar motions. The
temporal-flow basis-vector learned for the book 1s used
to estimate the falling of a different object, a cardboard
box. Figure 3 shows the images, the tracking results
and the coefficient ¢ that is also recovered throughout
the falling. Notice that despite the accurate transla-
tional tracking some counterclockwise rotation is re-
covered. This is not surprising since the motion of the
book included a rotational component, while the box
fell without rotation. We elaborate on the implications
of this in a later section.

Figure 2: Four frames of a falling book tracked by
a temporal-flow model (top rows), the horizontal and
vertical velocities components of the learned basis-
vector (third row) and the recovered expansion coef-
ficient throughtout the sequence (bottom row).

It is worth noting that the motion trajectory of the
box creates a line parallel (see Figure 3 bottom row) to
the falling book’s trajectory. Equation (18) minimizes
the error within a subspace (of a single basis vector, in
this case) in which the linear combinations of one line
lead to parallel lines.

6 Learned Models of Articulated
Human Motion

The cardboard [8] model for tracking five-part human
movement (arm, torso, thigh, calf and foot) involves re-
covering 40 motion parameters; this requires substan-
tial computation. Furthermore, due to the chain-like
structure of the tracking, any error in the computation
in an early part (in the chain structure) propagates to
the succeeding parts. In the following, we use a camera
with resolution 256 x 256 at 99Hz; this temporal sam-
pling rate is high enough for us to effectively employ
differential flow estimation. In most sequences the full
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Figure 3: A sequence of falling box (top row), the
tracked box (middle row) and the recovered temporal-
flow coefficient throughout the sequence (solid line)
and for comparison the temporal-flow coefficient for

the falling book (dashed line)

human body is observed performing an activity; there-
fore, the image support for each body part is usually
limited to a fairly small number of pixels.

Learning models of articulated motion can lead to
much simpler representations in which redundancies
are removed and motion couplings learned. A set of
samples of the temporal-flow values of the parts of ar-
ticulated object covering one entire period of an ac-
tivity are modeled using principal component analysis.
Applying this model to a new sequence of the articu-
lated object motion requires temporally “registering”
the model to the observation at the initial time #°.
In the experiments presented in this section, we time-
register sequences manually.

Similar to the accelerating book example, we assume
initially that:

e The body is manually segmented into five parts in
the first frame.

e People are moving at a similar viewing angle to the
camera during the training and testing phases.

3 Actually, both static and temporal information could be
used to automate this initialization. Static information includes
identifying specific configurations of body parts that unambigu-
ously indicate the temporal stage of the activity (e.g., for walk-
ing, two feet on the ground, a straight leg just landed on the
ground, etc.). Dynamic information includes exploiting knowl-
edge about the motion of body parts during activity performance
(e.g., the feet are not moving, etc.).

Figure 4: A few frames from a long image sequence of
a subject walking with the cardboard tracking [8].

e A single activity, such as “walking,” is learned and
tracked. The stage of the “walking” cycle of the first
frame of the sequence is known.

Learning of a the “walking” cycle temporal-flow
model is performed by first employing the algorithm
of Ju et al. [8] to compute each region’s instantaneous
motion parameters during the observed cycle of the ac-
tivity. Then, the motion paramters of the activity cy-
cles of several people are used to derive the basis-set of
temporal-flows of the activity. It is worth noting that
although the basis-vectors are computed for a whole
cycle of “walking” the instantaneous motion recovery
is conducted using a small computation temporal win-
dow (typically 6-10 frames). The five parts are tracked
using Equation (18), the body parts are considered as
a single object with individual motion parameters for
each part coordinated through the principal compo-
nents model.

Figure 4 displays a few frames of a walking sequence
from the training set of one subject with the five-part
body tracking as in [8]. Notice that the tracking ac-
cumulates errors, some of which also appear in the
temporal-flow tracking. In learning the model from
ten people’s gait*, the first basis vector accounts for
about 67% of the variations and reflects very clearly
the “walking” cycle. The next 4 basis vectors capture
about 23% of the variations and capture imaging, in-
dividual variations and some differencies in image ac-
quisition conditions.

Figure 5 shows the results of tracking a new instance
of walking of a subject using only the first basis-vector
of the temporal-flow. It also shows the coefficient, ¢y,
recovered throughout the sequence (n = 8). Low image
contrast leads to accumulation of tracking errors.

The learned temporal-flow models remain effective in
tracking articulated motion even when distance from
the camera and the viewpoint vary from the train-

4The distance and viewing direction in the training data
was constant. The viewing direction was approximately fronto-
parallel




ing set. The variation in distance introduces practi-
cal problems of optical flow estimation since the model
was learned for a “distant” object from the camera,
and the tracking is conducted at a closer distance;
here, the non-rigid motion of clothing and stronger
perspective effects are visible. Varying the viewpoint
poses a more fundamental problem since the appear-
ance of the activity changes as we move farther from
the learned viewpoint. In the following figures we pro-
vide results in which the viewing angle is about 20
degrees off the fronto-parallel plane. In experiments,
not shown here, in which the viewing angle was close
to 45 degrees off the fronto-parallel plane, we observed
that the calf and foot are not tracked well while the
torso and thigh tracking was satisfactory. Moreover,
the estimation process was observed to rely heavily on
the correctly tracked torso and thigh, while the other
parts were found to be nonconforming with respect to
the temporal-flow model of walking.

Figures 6 and 7 show the tracking of walking over
a long sequence, where the distance and viewing angle
are different from those used in learning. Also, in Fig-
ure 7, a subject not part of the training set 1s perform-
ing the activity. This example shows tracking errors,
especially at the body extremities, (note that most of
these errors are due to learning errors from the original
data-for example the enlargement of the foot area).

Learned temporal-flow of activities can also support
tracking of partially occluded parts. We demonstrate
the performance of our approach on sequences of two
activities, walking and marching. Since in these activ-
ities the movement of the legs and arms is symmetric,
once a model for the visible parts is learned it can be
applied to the occluded ones. Specifically, we assume
that the phase difference between the visible and oc-
cluded parts to be one half cycle. We also assume that
the difference in distance between the legs and the cam-
era are insignificant relative to the distance of the body
from the camera. In the first frame we initialize the re-
gions for ten body parts (when parts are occluded we
simply hypothesize their locations). Then, we mini-
mize Equation (18), where all ten regions are regarded
as a single object with multiple motion parameters.
Only the un-occluded pixels of each region are used in
the motion recovery. Each activity model was learned
separately from a single example of its performance.

The results of the tracking of a marching activity in
a long sequence is shown in Figure 8. The two legs are
tracked well despite some inaccuracies that are due to
the learned model inaccuracies.
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Figure 5: A few frames from a long image sequence of
a subject walking with the temporal-flow tracking of a
new subject’s walk and the recovered coefficient.
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Figure 6: A few frames from a long image sequence
of a subject walking as seen from a different viewing
direction with the computed temporal-flow tracking.

7 Discussion

In this paper we proposed a new approach for im-
age motion estimation from multiple frames that uses
learned models of temporal-flow. Demonstration of the
performance of the algorithm on both rigid and articu-
lated motions were provided. An activity learned from
one specific viewpoint was used to estimate the motion
of a novel subject performing the same activity from
a different but similar viewpoint. Also, it was demon-
strated that the tracking of the occluded body parts
1s possible when a temporal model of one side of the
body have been learned.

Learning plays a critical role in the accuracy of flow
estimation. In our experiments on articulated motion,
we observed that the inaccuracies of the cardboard
model from [8] used to generate the training set for
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Figure 7: A few frames from a long image sequence
of a subject walking with the computed temporal-flow
tracking.

the learning algorithm lead to similar inaccuracies in
the temporal-flow estimation. The tracking of the foot
has been particularly problematic since in most image
sequences it occupies a region of only about 30-100
pixels.

The learning of temporal-flow models of activities
was performed independently for each activity consid-
ered (e.g., a separate model for each of walking, march-
ing etc.). Subsequent body motion tracking would si-
multaneously employ all models to estimate the image
motion, with the “best” model selected. How to reduce
the number of temporal flow models, while minimizing
the likelyhood that activities combined into one model
do not result in tracking errors. (since only certain
linear combinations of the basis functions would corre-
spond to actual activities) is an open problem.

The temporal-flow estimation performs successfully
even when the motions of some parts do not conform
to the model, as long as a the majority of parts do
conform. For example, in the case of walking, overall
tracking is not disrupted if the arm is not moving in a
manner consistent with its motion during the learning
stage. Of course, the arm tracking fails, but the overall
body tracking remains accurate. The current strong
coupling between motions of body parts will be relaxed
in future research to allow weaker motion couplings for
certain parts.
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