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Abstract

This paper explores the use of Hidden Markov Mod-
els (HMMs) for the recognition of head gestures. A ges-
ture corresponds to a particular pattern of head move-
ment. The factal plane is tracked using a parameterized
model and the temporal sequence of three image rota-
tion parameters are used to describe four gestures. A
dynamic vector quantization scheme was implemented
to transform the parameters into suitable input data for
the HMMs. Fach model was trained by the iterative
Baum-Welch procedure using 28 sequences taken from
& persons. Experimental results from a different data
set (33 new sequences from 6 other persons) demon-
strate the effectiveness of this approach.

1. Introduction

The analysis of human gestures, postures and ex-
pressions can facilitate better human-computer inter-
action. Unfortunately, isolating the roles of individual
body-parts and their actions turns out to be a difficult
task [5]. In this paper we focus on the recognition of a
subset of head gestures.

Automatic face segmentation, tracking and recog-
nition of face expressions have recently been reported
[3, 4, 10]. We present in this paper an approach us-
ing Hidden Markov models (HMMs) to recognize head
gestures. Hidden Markov models are an extension of
the theory of Markov chains where the observation of
a certain output is a probabilistic function of the state.
A good introduction of this theory with several appli-
cation examples for speech recognition is presented by
Rabiner [8]. HMMs were recently used by [9] in a real-
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time system for recognition of a subset of American
Sign Language hand gestures.

A head gesture corresponds to a particular pattern
of head movement. We use the system developed by
Black and Yacoob [3] to track the face and estimate
its image motion parameters. The face is treated as
a rigid body moving in 3D space, and its motion is
characterized using 8 parameters. The parameters are
coded by a vector quantization scheme to obtain a sin-
gle data stream suitable for the HMMs. An approach
for dynamic vector quantization to segment a sequence
of gestures and to set thresholds for detecting the three
rotations is applied.

Each gesture is modeled by an HMM. The probabil-
ity distributions of each model are obtained by training
(iterative refinement of the probabilities) in order to
maximize the response of the model to the correspond-
ing gesture. During testing, the input data is presented
to all trained HMMs and the one with maximal re-
sponse to the input pattern determines the output of
the system.

This paper is organized as follows. Section 2 briefly
introduces the theory of HMMs, and Section 3 de-
scribes the implementation of the head gesture recog-
nition system using HMMs. Preliminary experimental
results are presented in Section 4 and Section 5 con-
cludes this paper.

2. Hidden Markov Models

Hidden Markov Models are an extension of the the-
ory of discrete Markov chains. Rabiner [8] presents a
tutorial on HMMs with applications to speech recogni-
tion. The special case of a discrete, first order, Markov
chain 1s completely described by a set of states, a set
of state transition probabilities and the specification of
the initial state. This kind of stochastic process could
be called an observable Markov model since the output
of the process is the set of states at each instant of time,
where each state corresponds to a physical (observable)



event.

This concept of Markov model can be extended to
include the case where the observation is a probabilistic
function of the state, so that the state is not directly
observable, i.e., hidden. Formally, an HMM is defined
by the following [8]:

1. A set of states S = {s1,s2,..., 55} of the model,
where N is the number of states of the model. We
will denote the state at time t as ¢;.

2. A set of distinct observation symbols V =
{v1,va,...,vpr}, where M is the number of obser-
vation symbols of the model.

3. A set of state transition probabilities 4 = {a;;},
where a;; = Plgi41 = sjlqe = si],1 < 4,5 < N;

4. A set of observation symbol probability distribu-
tion on state j, B = {b;(k)}, where b;(k) =
Pluglgr = 5], 1<j < Nand 1 <k < M;

5. The initial state distribution m = w; where m; =
Plgi= 5], 1<i<N.

Observation sequences O = 0105...0p (where each
observation O; is one of the symbols from V') can be di-
rectly obtained from the HMM specification. For con-
venience, we use the compact notation A = (A, B, )
to indicate the complete parameter set of the model.

In order to be useful in real-world applications, there
are three basic problems that must be solved:

P1 -The evaluation problem: given a model A and a
sequence of observations O, how to compute the prob-
ability that the observed sequence was produced by the
model (P[O|A]). The solution of this problem is neces-
sary to determine which model, among several, is the
most likely to generate the sequence O. This prob-
lem can be efficiently solved by the forward-backward
procedure presented in [8].

P2 -The determination of the optimal observation
sequence: given O and A, how to choose a state se-
quence ( = @Q1Q)2...QQr which 1s “optimal” in some
useful way (i.e., that best explains the observations).
The choice of optimality criteria is a strong function
of the intended use for the uncovered state sequence.
Typically, it is used to learn about the structure of the
model, to find optimal state sequences, or to get aver-
age statistics of individual states, etc. The most widely
used criterion for solving this problem is to maximize
P[Q|0, A] to determine the single best state sequence.
The Viterbi algorithm [6], based on dynamic program-
ming methods, is used to find such sequence.

P3 -The training problem: given A and O, how to
adjust the model parameters to maximize P[O|A]. Al-
though there is no known way to analytically solve this

problem, a model A can be chosen such that P[O]A]
is locally maximized using the iterative Baum-Welch
method [2].

The first task is to build individual gesture models
by using the solution of the training problem P3 to
optimally estimate their parameters. Refinements of
the model can be made by using the solution of P2,
that helps us understand the meaning of the states of
the model. Finally, once the HMMs have been studied
and optimized, recognition of a gesture is performed
by using the solution to P1. A gesture sequence is
presented to all HMMs and the one with maximum
likehood determines the output of the system. The
next section describes the implementation of our whole
system.

3. System Implementation

The block diagram of our head gesture recognition
system 1s presented in Figure 1. We use the approach
developed by Black and Yacoob [3] to track the motion
of the face. A brief description of the relevant part of
this system is given in Section 3.1. The rigid-motion of
the face is characterized by 8 parameters. The vector
quantization module, described in Section 3.2, trans-
forms these parameters into observation sequences that
are used by the HMMs. The HMMs, already trained,
use the solution of P1 to score the input observation
sequence, and the model with the highest score (i.e.,
maximum likelihood) determines the output symbol.
The description of the head gestures used for the ex-
perimentation of the system and their models are given
in Section 3.3.
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3.1. Tracking the Face Rigid Motion

The face tracking system developed by Black and
Yacoob [3] is able to track face rigid and non-rigid mo-
tion based on some facial features. The face is treated



as a rigid-body moving in 3D space and it is approxi-
mated by a plane viewed under perspective projection.
This planar model has proven to be a reasonable ap-
proximation of the face image motion under a wide
range of head movements. The image motion of a rigid
planar region of the scene can be described by the fol-
lowing model [1]:

w(z,y) =ao + a1z + a2y + boz® + by

v(z,y) = as + asx + asy + bozy + biy?
where the a; and b; are parameters to be estimated
and u(z,y) and v(xz,y) are the horizontal and verti-
cal components of the optical flow at the image point
P = (l‘, y)'

For recognizing head motions we are primarily inter-
ested in those motion parameters that express proper-
ties of the image motion related to 3D head rotations.
In our experiments we concentrate on the by and by
terms which roughly correspond to “yaw” and “pitch”,
respectively. We will call these rotations “image-yaw”
and “image-pitch” to distinguish these from the related
3D head motions (see Figure 2). The image-curl in Fig-
ure 2 is a measure of rotation given by tmage-curl =
a4 — ay. Other measures of facial motion and the track-
ing of some facial features are described in [3].
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3.2. Vector Quantization

Vector quantization [7] is used to code the param-
eters of interest into observation symbols that can be
processed by the HMMs. The face tracking system pro-
vides streams for the eight motion parameters; from
which the three image rotations are obtained. Figure 3
shows typical results of image rotation sequences. Each
column corresponds to three gestures. The dashed lines
of the graphs on top denote image-pitch and the dotted
lines image-yaw. The graphs on the bottom correspond
to image-curl. The first column presents, from left to
right, the gestures YES, NO and MAYBE. The second
column presents three YES gestures performed at dif-

ferent speeds. There are periods of silence between the
presentation of gestures. These silent periods are used
for gesture segmentation.

Each of these image rotations can be considered to
be positive (+), negative (=), or zero (0), so that a
simple thresholding scheme can be used to determine
the instantaneous rotation status.

With 3 independent parameters which can assume
3 different values, 27 symbols are necessary to code a
single state (e.g., the symbol “0” can be used to code
the parameter state (+, 4+, +), the symbol “1” to code
(+,4+,-), and so on, until all combinations are coded).

To facilitate the training and recognition operation
modes of the HMMs, the number of observation sym-
bols were reduced by mapping the image rotation pa-
rameters into the seven symbols: UP, DOWN, LEFT,
RIGHT, IN, OUT, and REST. A symbol is selected as
output based on the dominant motion which is deter-
mined by the signal with highest energy. UP or DOWN
are selected when image-pitch is dominant, LEFT or
RIGHT when image-yaw is dominant, and IN or OUT
when image-curl is dominant. When none of the signals
is dominant, the symbol REST is selected.

To improve the performance of the HMMs, we use
a dynamic mechanism for selecting an appropriate
threshold before the quantization process. First, a low
threshold is used to localize gestures in the input se-
quence. It is assumed that periods of silence (i.e., all
image rotations close to zero) separate gestures. Af-
ter the localization of a gesture in the sequence, the
energy of each parameter is computed, and its energy
level is used to select an appropriate threshold. The
image rotations are then thresholded and mapped to
the seven possible observation symbols, depending on
the instantaneous highest energy band. Although the
system could work by directly considering the over-
all highest energy band, we choose this approach of
selecting the instantaneous highest band in order to
model more complex gestures. Actually, if we restrict
the system to these four gestures, considering the over-
all highest energy would increase the robustness of the
system, but we would not be able to recognize gestures
composed of different rotations.

3.3. Head Gestures

For our preliminary experiments we developed one
HMM for each gesture. The task of this system is to
map each gesture to the output symbols YES, NO,
MAYBE and HELLO. The YES gesture is character-
ized by periodic cycles in the quantized values of image-
pitch. The NO and MAYBE gestures are respectively
characterized by cycles in image-yaw and image-curl.
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A single nod (one single cycle in image-pitch) charac-
terizes the HELLO gesture.

Most HMMs applied for speech recognition use left-
right models. In left-right models, the state transition
coefficients have the property a;; = 0, for j < ¢, i.e.,
no transitions are allowed to states whose indices are
lower than the current state. Due to the cyclic na-
ture of many head gestures, we adopted ergodic or fully
connected HMMs to model the cyclic gestures (YES,
NO, and MAYBE gestures) and left-right models to
model the sequential one (HELLO gesture). All HMMs
have two states and have been trained by the iterative
Baum-Welch procedure.

4. Experimental Results

The models were trained using 28 sequences taken
from b5 persons. The test data consisted of 33 sequences
taken from 6 other persons. Figure 4 shows the number
of available gestures of each kind in both training and
testing data sets. Due to the simplicity of the models,
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Data | YES | NO | MAYBE | HELLO | Total
Train 18 3 4 3 28
Test 16 6 6 5 33

the parameters of each model were initially “guessed”
and then tunned by the Baum-Welch iterative process.

Figure 5 shows the results for the trained HMMs
using test data. Observe that the HELLO gesture is
confused most of the time with the YES gesture, be-
cause of the definition of the HELLO gesture. Looking
at the input sequence data for the HELLO gesture,
most subjects present more than a single nod (at least
1.5 cycles), which characterizes the YES gesture. The
YES gesture is also confused with the HELLO gesture
because some subjects when told to perform the YES
gesture, executed only one image-pitch cycle. Other
recognition errors occur when the data presents high



energy on two or more rotations (ambiguous gesture).

YES | NO | MAYBE | HELLO
YES 13 2 3
NO
MAYBE 1 1 4
HELLO 2 2
TOTAL 16 6 6 5

The table in Figure 6 demonstrate the improve-
ment due to the use of a dynamic vector quantiza-
tion scheme over a simple vector quantization scheme,
which uses single thresholds in order to determine the
observation symbols. Curiously, the performance of the
HMMs improves for all gestures except for the NO ges-
ture. Again, observing the data, one particular data se-
quence contained high energy in two rotations, image-
yaw and image-curl, which caused the confusion in the
output.

YES | NO | MAYBE | HELLO

YES 5 3

NO 11 6 3 1
MAYBE 3

HELLO 1

TOTAL 16 6 6 5

5. Conclusion

We have described an approach for recognizing hu-
man head gestures based on HMMs and a parameter-
ized image motion model. The rigid motion of the
face plane is tracked and 8 motion parameters that de-
scribe its motion are estimated. These 8 parameters are
converted into 3 image-rotation parameters which are
coded by a dynamic vector quantization scheme and
sent to the HMM of each gesture. The gesture that
correspond to the HMM with maximum likelihood 1s
selected as output. Preliminary results with 4 gestures
demonstrate the effectiveness of this approach. Fur-
ther research is under way in order to improve the vec-
tor quantization module, and use more complex HMMs
(with more states) to model the gestures. Also, we are
gathering more data to train and test the system. Since
the use of few data sets tend to overfit the models, we

expect to obtain a better performance when more data
is used to train the HMMs.

The simplicity of the gestures and models suggests
the use of deterministic models instead of stochastic
ones. They might be a good alternative, but we be-
lieve that the vocabulary of the system can be more
easily extended when HMMs are used. Since the out-
put of the HMMs are probability values, these could be
used as confidence measures, and help disambiguating
gestures, which would not easily be supported by pure
deterministic systems.
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