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Abstract

A model for computing image flow in image se-
quences containing a very wide range of instanta-
neous flows is proposed. This model integrates the
spatio-temporal image derivatives from multiple
temporal scales to provide both reliable and accu-
rate instantaneous flow estimates. The integration
employs robust regression and automatic scale
weighting in a generalized brightness constancy
framework. In addition to instantaneous flow es-
timation the model supports recovery of dense es-
timates of image acceleration and can be readily
combined with parameterized flow and accelera-
tion models. A demonstration of performance on
image sequences of typical human actions taken
with a high frame-rate camera, is given.

1 Introduction

Image motion estimation involves relating spatial and
temporal changes in image intensity to estimates of im-
age flow. Articulated and deformable motions such as
those encountered in images of humans in motion give
rise to 1mage sequences having, instantaneously, a wide
range of flow magnitudes ranging from very small sub-
pixel motions, whose recovery 1s inhibited by typical
signal to noise constraints, to very large multiple pixel
motions that can be recovered using expensive corre-
lation methods or multi-resolution approaches. Here,
we focus on the problem of estimating dense image flow
for image sequences in which instantaneous flows range
from 2-4 pixels/frame down to 1/16—1/32 pixel /frame.
The practical problem, of course, is that we do not
know a priori which parts of the image are moving with
which speed. Our solution is a scale-space like solution
[11] in which we estimate image flow over a wide range
of temporal scales, and combine these estimates (using
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Figure 1: Pendulum movement illustrating varying ve-
locities along its motion path

both spatial and temporal constraints) using a combi-
nation of robust estimation and parametric modeling
as in [5].

To motivate both the problem and our proposed so-
lution consider a pendulum arm moving in front of
a camera. The image flow will vary depending upon
the distance of the measured point from the hanging
point (see Figure 1). As we move towards the pendu-
lum hanging point the instantaneous flow becomes very
small and will fall in the noise range of the imaging sys-
tem. As a result, two frame estimation and subsequent
integration of these flow measurements over time will
be highly noisy. In the context of human motion, the
coincidence of lip motion with body and head motion,
or the calf rotation around the knee create similar scale
variations in the flow field.

The majority of published algorithms for estimation
of image flow are based on two images (for a recent
survey see [2]). Several approaches, however, consider
the incremental estimation of flow [4, 13]; then, tem-
poral continuity of the flow applied over a few images
(for example, assuming constant acceleration) can im-
prove the accuracy of the flow estimate. These ap-
proaches are based on computations between consecu-
tive images. Other approaches use velocity-tuned fil-
ters (i.e., frequency-based methods) [8, 10] to compute
the flow, and can be extended to flow estimation from
several frames. The use of scale-space theory to com-
pute optical flow was recently proposed by Lindeberg
[12]. The proposed algorithm focused on scale selec-
tion in the spatial dimension so that different size im-
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Figure 2: Eight images (each two frames apart) from
a long sequence of a moving arm

age structures lead to different selection of scales for
flow computation. The algorithm estimates flow from
two images and involves spatial multi-scales.

2 A Motivating Example

We will use scale=1 to denote flow estimation between
two consecutive images (i.e., the finest temporal res-
olution available),scale =2 to denote flow estimation
between images that are two frames apart, etc. To
illustrate the limitation of image flow estimates from
any single scale we employ an image sequence of an
arm moving in front of a camera. The sequence was
taken with a high-frame-rate camera (500 frames per
second) which allows us to capture the natural rapid
motion of the arm. The arm (see Figure 2) is mov-
ing in a pendulum-like motion (with the hand rotat-
ing around the arm during the motion) in front of a
lightly textured background*. Notice that there i1s a
shadow created by the hand, leading to non-zero flow
estimates of the shadow as well as the arm. The arm’s
intensity pattern consists of two parts: the arm itself 1s
highly textured (allowing better flow estimation) while
the hand is somewhat uniform in brightness. Figure
2 shows eight images from the sequence (chosen two
frames apart). While the motion of the arm between
two frames is very small, it will become apparent when
the flow estimates are shown.

Figure 3 shows the image flow magnitudes for six
scales (falling on a geometric scale 1,2,4,8,16, and 32
frames apart). The finest scale provides detailed es-
timates of the flow magnitude at the hand but quite
noisy estimates along the arm, while the coarsest scale
results in accurate estimates along the arm but consid-
erably blurred and inaccurate estimates on the hand.

*The quadrants’ boundary intensity variation of the back-
ground is because the video-camera consists of four separate A /D
banks. As a result, flow estimation at the quadrant boundaries
is inaccurate. The problem could be overcome by local gain
compensation.
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Figure 3: Enhanced flow display to show arm estima-
tion at 1,2,4,8,16 and 32 scales.

3 A Multi-scale Flow Model

Let I(x,y,t) be the image brightness at a point (z,y)
at time ¢. The brightness constancy assumption at
scale s 1s given by

I(z,y,t) = I(x + subt,y + svét,t + sbt) (1)

where (u,v) is the horizontal and vertical image ve-
locity at (z,y), 6t is small. We assume, for now,
that the instantaneous velocity (u, v) remains constant
during the time span sét (leading to a displacement
(suét, svét)). This assumption is less likely to hold
with the increase of scale and can lead to violations
of brightness constancy. Let the range of scales over
which flow is to be estimated be 1,..,n. Expanding
Equation (1) using a Taylor Series approximation (as-
suming locally constant flow) and dropping terms re-
sults in

0=s(Is(z,y,hut I*y(z,y, )+ I*4(z,y,t) (2)

where I* is the s-th frame (forward in time relative to
I) of the sequence, and I°;, I*, and I*; are the spatial
and temporal derivatives of image I° relative to .
Since Equation (2) is underconstrained for computa-
tion of (u,v), it is ordinarily posed as a minimization
of a least squares error of the flow over a very small

neighborhood, R, of (z,y), leading to
E(u,v,8)= > (s(I'pu+I'yv+ 1)) (3)
(z,y)ER

We have n equations of the form of Equation (3) one
for each scale. The scale-generalized error 1s defined as

Ep(u,v) =" > (s(Ipu+ I'yv+1°))"  (4)

s=1(z,y)eR




Notice that Equation (4) biases the error term towards
coarser scales due to the multiplication term s. There-
fore, we normalize the error terms so that the mini-
mization is in the formf

Ep(u,v) =Y > (IputI"yv+1%)°  (5)

s=1(zy)ER

Equation (5) gives equal weight to the error values
of all scales. Since it is expected that at each point
(z,y) the accuracy of instantaneous motion estimation
will be scale-dependent, we introduce a weight func-
tion W(u,v,s) designed (see below) to minimize the
influence of residuals of the relatively inaccurate scales.
Equation (5) now becomes

ED(u,v):Z Z (W (u, v, 8)(I* pu+ I*yv + I%,))?
s=1(zy)eR
(6)

Instead of the least squares minimization in Equation
(6) we choose a robust estimation approach as pro-
posed in [4], resulting in

Ep(u,v) =" > p(W(Ipu+I°yv+I°),0)
s=1 (x,y)ER
(7)

where p is a robust error norm that is a function
of a scale parameter o.. Since the weight function
W(u,v,s) should also reflect the degree of accuracy
of the flow estimation we redefine it to include a scal-
ing parameter oy, W{(u,v,s,0y). The choice of the
weighting function W should satisfy the following con-
straints:

o It should take on values in the range [0..¢], ¢ typically
chosen as 1.0 for computational convenience.

e For a large o, W should approach 1.0 regardless of
(u,v) and s.

o Given oy, larger estimated flow (v, v) at point (z,y)
should lead to higher weights for the lower scales of
the error term I°;u 4 I°yv 4+ I*;, while a small flow
should lead to higher weights of the highest scales.

Figure 4 reflects qualitatively the desired shape of the
weighting function for a fixed o,,. It illustrates the
weighting as a function of scale s and flow magnitude
[|(w, v)|| at (x,y). The following Gaussian function sat-
isfies the above requirements

3 2 2
W(u,v,s,00) = ¢ " @wmomrms) /277 (g)

tThe same effect could have been achieved by dividing the
right side of Equation (2) by s for all scales prior to error
summation.
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Figure 4: The weighting function as a function of s and
flow magnitude ||(u, v)]|

where ||(u,v)||? is the squared magnitude of the cur-
rent flow estimate at (x, y), and « is a constant. Notice
that when ||(u, v)||? << 1.0 the maximal weight occurs
at the highest scale n, while higher values of ||(u, v)||?
lead to a maximal weight at lower scales; specifically
the Gaussian is centered at W. The scale pa-
rameter ¢, determines the width of the Gaussian, and
the constants o and 1.0 can be changed to further shift
the maximal weight scale location. The application of
the weighting function in the estimation is as follows:
in the first iteration, all scales are given equal weight
(1.0) by selecting a large oy,. Afterwords, iteratively,
the estimates are refined by decreasing o, .

This temporal multi-scale procedure is accompanied
by a spatial coarse-to-fine strategy [3] that constructs
a pyramid of the spatially filtered and sub-sampled im-
ages (for more information see [4]) and computes the
flow initially at the coarsest level and then propagates
the results to finer levels. The computational aspects
of the multi-scale model follow, generally, the approach
proposed by Black and Anandan [4, 5].

4 Experimental Results

In the following figures we show the results of image
flow computation when o,, = 20.0 and is decreased at
a rate of 0.85 for five iterations, and o, = 100.0 and is
decreased also at a rate of 0.85 for 40 iterations. The
computation is performed over 16 scales.

Figure 5 illustrates the weights at several scales dur-
ing the computation of image flow (the brighter the
intensity the higher the weight; weights across scales
were normalized in these images to allow for compar-
isons). At scale=1 only the hand area is given high
weights while the arm and the background are given
very low weights. As the scale increases the weights
are increased along the arm and the background while
a decrease on the hand gradually takes place. At the
highest scale (scale =16) the hand’s weight is very
low while the arm and the background receive a high
weight. Figure 6 shows the effect of the iterative re-
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Figure 5: The weighting function W as computed at
the scales 1,4,7,10,13 and 16 scales (top left to bottom
right respectively) expressed as an intensity image.
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Figure 6: The weighting function W at scale 1 (finest
scale) as evolved in five iterations

finement of the weighting function W for scale =1 (the
finest scale) on the relative weights for different regions.
The values are normalized across the five images to al-
low comparison. Notice that the first iteration gives
high weights to the hand, and the weights given to the
arm and the background are somewhat significant. The
fifth iteration also gives high weights to the hand while
the arm and the background have the lowest weight,
and they are much lower than after the first iteration.

Figure 7 (top and middle rows) shows graphs of the
individual scale flow magnitudes computed along a line
drawn down the center of the arm (bottom right).
These graphs correspond to the scale computations
shown in Figure 3. Since the arm is approzimately mov-
ing like a pendulum with the hand simultaneously ro-
tating around the wrist (see Figure 10), the flow should
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Figure 7: The flow magnitude along a line (bottom
right) computed using a single scale (s = 1,2,4,8,16
and 32 scales; top and middle rows), the multi-scale
flow magnitudes (bottom left), and the multi-scale flow
magnitudes along the line (bottom center)

increase slowly along the arm then jump considerably
on the hand. This is clearly visible in these graphs.
The dip in these graphs (occurring between 125-145) is
a result of the intensity discontinuity of the four quad-
rants of the camera. Figure 7 also shows the multi-
scale flow magnitude results (bottom left). The flow
boundary is quite sharp and the corresponding flow
magnitude along the line is shown (bottom center); it
measures a very smooth change in the flow along the
arm and significant increase at the hand (with maximal
flow at the finger).

In order to compare the performance of single scale
(scale = 1) and multi-scale flow estimation, we gener-
ated a sequence of images using a synthetic flow model
where we have ground-truth data. Figure 8 (top) shows
an image of a person during a walking activity. The
synthetic sequence is generated by warping the image
patch of the “calf” foreward according to a multi-scale
parameterized motion model for several frames (assum-
ing constant velocity). The estimated multi-scale (12
scales) flow magnitudes are shown (top right). A quan-
titative comparison along a line on the “calf” between
the original flow (bottom, solid line) the single scale
flow (dotted line) and the multi-scale (dashed line).
The multi-scale estimate is closer to the synthetic flow
than the single scale estimation. Accurate recovery of
the flow is actually limited by interpolation side effects
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Figure 8: A synthetic motion example that compares
flow magnitudes on a real image of a calf. The image
(see (b)) was warped and the flow magnitudes along a
line (see (c)) are shown as a solid line (see (d)). The
estimates of flow magnitudes using 1 and 12 scales over
the same line are shown ((d), dotted and dashed lines,
respectively).

in generating the synthetic motion.

5 Estimation of Image Acceleration

The scale-generalized brightness constancy assumption
given in Equation (1) assumes constant flow at all
scales. This can be extended to include acceleration
models. Let the image flow as a function of scale s be
(u(s),v(s)). Then the brightness constancy assump-
tion at scale s becomes

s)ds,y + Z

Iz, y,t) = I(z + Z
As a special case, if image motion 1s assumed to be sub-
ject to a constant acceleration, the flow can be given

by

s)ds,t+s) (9)

u(s) = xg + 418 (10)
v(s) = w2 + 238 (11)

where 1 and z3 are the horizontal and vertical accel-
eration terms. Note that in the context of a long se-
quence this model supports a piecewise constant accel-
eration assumption. If acceleration fluctuations within
the scales involved in the estimation are small or fall
within the performance range of the robust estimator
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Figure 9: The weights (upper row) at scales 1, 3, 4 and
6, respectively (out of 6 scales), and the flow magnitude
and vertical and horizontal accelerations (bottom row,
left to right, respectively) for a falling book.

(about 35%-40% outliers) this model holds. This flow
model leads to a brightness constancy assumption of
the form

Iz, y,t) = I(x—i—Z(xo +x1d),y+ Z(xz +x3i),t+s)
i=1 i=1
(12)

Using a Taylor Series expansion and dropping terms
(including scale normalization) we arrive at

s+1 s+ 1
0=1(xo+z Y+ Iy (2o 423 )+ 1% (13)

2 2

The new scale-generalized error function is given by

=Y Y AW e T aw

s=1(zy)eR

s+1

N+ I0),00)

Figure 9 shows the dense flow and acceleration esti-
mated for a book-falling sequence (see also Figure 11).
The top row shows the the weighting function’s val-
ues assigned for each scale (normalized to enhance the
contrast). At low scales the book’s region is assigned
high weight while the background is assigned very low
weight. This is reversed as scale is increased, so at
the top scale the motion of the book is so large that
little weight 1s given to the book area. The bottom
row shows the dense velocity magnitude (left) and the
vertical and horizontal accelerations (center and right,
respectively). Notice that the estimated horizontal ac-
celeration is almost uniformly zero.

6 Parameterized Flow Models

Dense flow computation generates large data sets that

Isy(l‘z + x3

may not be easily used in higher level vision tasks. Re-
cently, it has been demonstrated that parameterized




flow models can provide a powerful tool for reason-
ing about image motion between successive images (see
[6]). The multi-scale flow estimation algorithm can be
extended in a straightforward way to parameterized
models of image flow. In this section we describe the
extension of the muti-scale framework to affine and pla-
nar parameterized image motion models.

Recall that the flow constraint given in Equation
(2) assumes constant flow over a small neighborhood
around the point (z,y). Over larger neighborhoods,
a more accurate model of the image flow i1s given by
low-order polynomials [1]. For example, affine motion
is given by

(15)
(16)

where a;’s are constants and (U, V) is the instanta-

Ulx,y) = ag + a12 + azy
V(z,y) = as + asx + asy

neous velocity vector. Equation (7) now becomes

Ep(U V) 3 p(W(U,V,s5,00) (I U+ V4T ), 00)

s=1(zy)€A/P
(17)
where A/P denotes the region in which the flow is
assumed to be affine (A4) or planar (P).
mization of Equation (17) results in estimates for the

The mini-

parameters a;. The choice of the weighting function
W is somewhat more complex here than it was pre-
viously. The weighting function can be designed us-
ing the current flow estimates computed by the model
(U, V). This weighting leads to different weights within
the region according to the magnitude of the flow so
that at points where the flow estimate is low the coarser
scales will be more dominant while the larger flow es-
timates will determine the finer scales. Alternatively,
W can be designed using the parameters of the model
a; (i.e., W(a,s,oy) where a is the set of model pa-
rameters). The former leads to a computation based
on weighting of spatio-temporal derivatives while the
latter leads to weighting of parametric models. Once
a choice for the weighting function has been made the
computation of the parameters of the model follows the
approach proposed in [4].

In the examples in this chapter we adopt the weight
of parametric models. Recall that the parameters of
the affine and planar models capture several aspects of
the region’s motion (see [6]). Since the translation of
the region is of most interest the parameters ag and ag
can be substituted as ||(ag, as)|| for ||(u, v)|| in Equa-
tion (8).

Figure 10 shows the results of parameterized flow
estimation over the hand region of the moving arm
over a long sequence (about 540 frames). The param-
eterized flow is used to automatically track the hand
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Figure 10: Seven images of a long sequence of the
arm in motion (top).Flow results without acceleration
model, az and ag (left, solid and dashed lines, respec-
tively) and curl (center row left to right).

motion throughout the sequence similar to [6] (assum-
ing an initial manual hand segmentation in the first
image). The frame numbers are shown with the im-
ages. The left graph shows the horizontal and vertical
translations (solid and dashed lines, respectively) and
the right graph shows the curl of the hand. Notice the
smoothness and robustness of these figures.

Parameterized flow models can also be extended to
include acceleration. The extension of the affine model
requires that the motion parameters across scales be
dependent on the scale so that a; becomes a;(s). As-
suming a constant acceleration for these parameters,
the models now become

Uz, y)=(ag + ao’s) + (a1 + da}s)x + (az + ays)y (18)
V(z,y)=(as + as's) + (a4 + a}s)x + (a5 + ags)y (19)

where af), a are the linear horizontal and vertical ac-
celeration components of the motion and the af, a, a}
and af are acceleration components that can be related
to angular, divergence and deformation accelerations.

Figure 11 describes an experiment in which the ac-
celeration of a falling book is estimated from an image
sequence.! Notice that although the book is falling ver-
tically, a small horizontal motion component is present
(observe the change of the upper left corner of the book
relative to the white stripes). The bottom left graph
of Figure 11 shows the horizontal and vertical velocity
computed for the sequence (dashed and dotted lines,
respectively), and the predicted vertical velocity (solid
line) based on the velocity computed at the first frame
and the average acceleration in the first ten frames.
The graphs suggest that the inclusion of acceleration

{The book is manually segmented in the first image and
tracked automatically afterwords using our multi-scale param-
eterized flow model.
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Figure 11: Two images (60 frames apart) of a falling
book, the vertical and horizontal velocities (dashed and
dotted lines, respectively (a)), and the predicted ver-
tical velocity from the starting velocity and average
acceleration, as’, in the first 10 frames (solid line, (a))
and the vertical and horizontal accelerations (dashed
and solid lines respectively, (b))

in the image motion model is valuable in predicting the
real motion for a significant amount of time.

7 Discussion

The proposed multi-scale approach for computing op-
tical flow and acceleration introduced explicit tempo-
ral models for image intensity and flow changes. As
demonstrated in several image sequences, a multi-scale
framework can increase the accuracy of instantaneous
motion estimates and recover simultaneously both flow
and acceleration.

Algorithms for motion estimation can be quite noisy
since they are based on local operators applied over
very small neighborhoods between two images. Tem-
poral smoothing was proposed by [5] in a regulariza-
tion framework; in contrast our multi-scale approach
employs well-understood scale-space concepts [11, 12]
to create smooth estimates. Due to the integrative na-
ture of the multi-scale estimation, motion smoothing
is achieved through the estimation process.

In this paper we developed a new multi-temporal
framework for computing flow and acceleration in im-
ages. Both dense and parameterized representations
were employed and demonstrations on long image se-
quences were provided. This approach 1s an extension
of the popular brightness-constancy assumption to a
temporal scale-space domain. It provides for higher ac-
curacy over a wider range of flows in image sequences.
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